Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2024

Open Access 01-12-2024 | Migraine | Research

Alterations of the alpha rhythm in visual snow syndrome: a case-control study

Authors: Antonia Klein, Sarah A. Aeschlimann, Frederic Zubler, Adrian Scutelnic, Franz Riederer, Matthias Ertl, Christoph J. Schankin

Published in: The Journal of Headache and Pain | Issue 1/2024

Login to get access

Abstract

Background

Visual snow syndrome is a disorder characterized by the combination of typical perceptual disturbances. The clinical picture suggests an impairment of visual filtering mechanisms and might involve primary and secondary visual brain areas, as well as higher-order attentional networks. On the level of cortical oscillations, the alpha rhythm is a prominent EEG pattern that is involved in the prioritisation of visual information. It can be regarded as a correlate of inhibitory modulation within the visual network.

Methods

Twenty-one patients with visual snow syndrome were compared to 21 controls matched for age, sex, and migraine. We analysed the resting-state alpha rhythm by identifying the individual alpha peak frequency using a Fast Fourier Transform and then calculating the power spectral density around the individual alpha peak (+/- 1 Hz). We anticipated a reduced power spectral density in the alpha band over the primary visual cortex in participants with visual snow syndrome.

Results

There were no significant differences in the power spectral density in the alpha band over the occipital electrodes (O1 and O2), leading to the rejection of our primary hypothesis. However, the power spectral density in the alpha band was significantly reduced over temporal and parietal electrodes. There was also a trend towards increased individual alpha peak frequency in the subgroup of participants without comorbid migraine.

Conclusions

Our main finding was a decreased power spectral density in the alpha band over parietal and temporal brain regions corresponding to areas of the secondary visual cortex. These findings complement previous functional and structural imaging data at a electrophysiological level. They underscore the involvement of higher-order visual brain areas, and potentially reflect a disturbance in inhibitory top-down modulation. The alpha rhythm alterations might represent a novel target for specific neuromodulation.

Trial registration

we preregistered the study before preprocessing and data analysis on the platform osf.org (DOI: https://​doi.​org/​10.​17605/​OSF.​IO/​XPQHF, date of registration: November 19th 2022).

Graphical Abstract

Literature
1.
go back to reference Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia (2018);38(1):1-211 Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia (2018);38(1):1-211
2.
go back to reference Schankin CJ, Maniyar FH, Digre KB, Goadsby PJ (2014) Visual snow’–a disorder distinct from persistent migraine aura. Brain 137(5):1419–1428PubMedCrossRef Schankin CJ, Maniyar FH, Digre KB, Goadsby PJ (2014) Visual snow’–a disorder distinct from persistent migraine aura. Brain 137(5):1419–1428PubMedCrossRef
3.
go back to reference Scutelnic A, Slavova N, Klein A, Horvath T, de Beukelaer SA, Arnold M et al (2023) Symptomatic visual snow in acute ischemic stroke: a case series. Headache: J Head Face Pain 63(1):173–176CrossRef Scutelnic A, Slavova N, Klein A, Horvath T, de Beukelaer SA, Arnold M et al (2023) Symptomatic visual snow in acute ischemic stroke: a case series. Headache: J Head Face Pain 63(1):173–176CrossRef
4.
go back to reference Weiss S, Rohde V, Hautmann X, Schittkowski M (2021) Visual snow syndrome-a pixelated vision. Die Ophthalmologie 119(6):627–631PubMed Weiss S, Rohde V, Hautmann X, Schittkowski M (2021) Visual snow syndrome-a pixelated vision. Die Ophthalmologie 119(6):627–631PubMed
5.
go back to reference Mehta DG, Garza I, Robertson CE (2021) Two hundred and forty-eight cases of visual snow: a review of potential inciting events and contributing comorbidities. Cephalalgia 41(9):1015–1026PubMedCrossRef Mehta DG, Garza I, Robertson CE (2021) Two hundred and forty-eight cases of visual snow: a review of potential inciting events and contributing comorbidities. Cephalalgia 41(9):1015–1026PubMedCrossRef
6.
go back to reference Gersztenkorn D, Lee AG (2015) Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol 60(1):1–35PubMedCrossRef Gersztenkorn D, Lee AG (2015) Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol 60(1):1–35PubMedCrossRef
7.
go back to reference Puledda F, Bruchhage M, O’Daly O, Ffytche D, Williams SCR, Goadsby PJ (2020) Occipital cortex and cerebellum gray matter changes in visual snow syndrome. Neurology 95(13):e1792–e9PubMedPubMedCentralCrossRef Puledda F, Bruchhage M, O’Daly O, Ffytche D, Williams SCR, Goadsby PJ (2020) Occipital cortex and cerebellum gray matter changes in visual snow syndrome. Neurology 95(13):e1792–e9PubMedPubMedCentralCrossRef
8.
go back to reference Puledda F, O’Daly O, Schankin C, Ffytche D, Williams SC, Goadsby PJ (2021) Disrupted connectivity within visual, attentional and salience networks in the visual snow syndrome. Hum Brain Mapp 42(7):2032–2044PubMedPubMedCentralCrossRef Puledda F, O’Daly O, Schankin C, Ffytche D, Williams SC, Goadsby PJ (2021) Disrupted connectivity within visual, attentional and salience networks in the visual snow syndrome. Hum Brain Mapp 42(7):2032–2044PubMedPubMedCentralCrossRef
9.
go back to reference Schankin CJ, Maniyar FH, Chou DE, Eller M, Sprenger T, Goadsby PJ (2020) Structural and functional footprint of visual snow syndrome. Brain 143(4):1106–1113PubMedPubMedCentralCrossRef Schankin CJ, Maniyar FH, Chou DE, Eller M, Sprenger T, Goadsby PJ (2020) Structural and functional footprint of visual snow syndrome. Brain 143(4):1106–1113PubMedPubMedCentralCrossRef
10.
go back to reference Aldusary N, Traber GL, Freund P, Fierz FC, Weber KP, Baeshen A et al (2020) Abnormal connectivity and brain structure in patients with visual snow. Front Hum Neurosci 14:582031PubMedPubMedCentralCrossRef Aldusary N, Traber GL, Freund P, Fierz FC, Weber KP, Baeshen A et al (2020) Abnormal connectivity and brain structure in patients with visual snow. Front Hum Neurosci 14:582031PubMedPubMedCentralCrossRef
11.
go back to reference Van Laere K, Ceccarini J, Gebruers J, Goffin K, Boon E (2022) Simultaneous (18)F-FDG PET/MR metabolic and structural changes in visual snow syndrome and diagnostic use. EJNMMI Res 12(1):77PubMedPubMedCentralCrossRef Van Laere K, Ceccarini J, Gebruers J, Goffin K, Boon E (2022) Simultaneous (18)F-FDG PET/MR metabolic and structural changes in visual snow syndrome and diagnostic use. EJNMMI Res 12(1):77PubMedPubMedCentralCrossRef
12.
go back to reference Luna S, Lai D, Harris A (2018) Antagonistic relationship between VEP potentiation and Gamma Power in Visual Snow Syndrome. Headache 58(1):138–144PubMedCrossRef Luna S, Lai D, Harris A (2018) Antagonistic relationship between VEP potentiation and Gamma Power in Visual Snow Syndrome. Headache 58(1):138–144PubMedCrossRef
13.
go back to reference Yildiz FG, Turkyilmaz U, Unal-Cevik I (2019) The clinical characteristics and neurophysiological assessments of the Occipital cortex in Visual Snow Syndrome with or without migraine. Headache: J Head Face Pain 59(4):484–494CrossRef Yildiz FG, Turkyilmaz U, Unal-Cevik I (2019) The clinical characteristics and neurophysiological assessments of the Occipital cortex in Visual Snow Syndrome with or without migraine. Headache: J Head Face Pain 59(4):484–494CrossRef
14.
go back to reference Eren O, Rauschel V, Ruscheweyh R, Straube A, Schankin CJ (2018) Evidence of dysfunction in the visual association cortex in visual snow syndrome. Ann Neurol 84(6):946–949PubMedCrossRef Eren O, Rauschel V, Ruscheweyh R, Straube A, Schankin CJ (2018) Evidence of dysfunction in the visual association cortex in visual snow syndrome. Ann Neurol 84(6):946–949PubMedCrossRef
15.
go back to reference Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15(5):191–199PubMedCrossRef Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15(5):191–199PubMedCrossRef
16.
17.
go back to reference Hall SD, Holliday IE, Hillebrand A, Singh KD, Furlong PL, Hadjipapas A et al (2005) The missing link: analogous human and primate cortical gamma oscillations. NeuroImage 26(1):13–17PubMedCrossRef Hall SD, Holliday IE, Hillebrand A, Singh KD, Furlong PL, Hadjipapas A et al (2005) The missing link: analogous human and primate cortical gamma oscillations. NeuroImage 26(1):13–17PubMedCrossRef
18.
go back to reference Hepschke JL, Seymour RA, He W, Etchell A, Sowman PF, Fraser CL (2022) Cortical oscillatory dysrhythmias in visual snow syndrome: a magnetoencephalography study. Brain Commun 4(1):fcab296PubMedCrossRef Hepschke JL, Seymour RA, He W, Etchell A, Sowman PF, Fraser CL (2022) Cortical oscillatory dysrhythmias in visual snow syndrome: a magnetoencephalography study. Brain Commun 4(1):fcab296PubMedCrossRef
20.
go back to reference Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37(7):357–369PubMedCrossRef Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37(7):357–369PubMedCrossRef
21.
go back to reference Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh 87(1):527–570CrossRef Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh 87(1):527–570CrossRef
22.
go back to reference Di Gregorio F, Trajkovic J, Roperti C, Marcantoni E, Di Luzio P, Avenanti A et al (2022) Tuning alpha rhythms to shape conscious visual perception. Curr Biol 32(5):988–98e6PubMedCrossRef Di Gregorio F, Trajkovic J, Roperti C, Marcantoni E, Di Luzio P, Avenanti A et al (2022) Tuning alpha rhythms to shape conscious visual perception. Curr Biol 32(5):988–98e6PubMedCrossRef
23.
go back to reference Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20(3):376–383PubMedCrossRef Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20(3):376–383PubMedCrossRef
24.
go back to reference Bagherzadeh Y, Baldauf D, Pantazis D, Desimone R (2020) Alpha synchrony and the Neurofeedback Control of Spatial Attention. Neuron 105(3):577–87e5PubMedCrossRef Bagherzadeh Y, Baldauf D, Pantazis D, Desimone R (2020) Alpha synchrony and the Neurofeedback Control of Spatial Attention. Neuron 105(3):577–87e5PubMedCrossRef
25.
go back to reference Gaillard C, Ben Hamed S (2022) The neural bases of spatial attention and perceptual rhythms. Eur J Neurosci 55(11–12):3209–3223PubMedCrossRef Gaillard C, Ben Hamed S (2022) The neural bases of spatial attention and perceptual rhythms. Eur J Neurosci 55(11–12):3209–3223PubMedCrossRef
26.
go back to reference bjørk mh, Stovner L, Nilsen B, Stjern M, Hagen K, Sand T (2009) The occipital alpha rhythm related to the migraine cycle and headache burden: a blinded, controlled longitudinal study. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol 120:464–471CrossRef bjørk mh, Stovner L, Nilsen B, Stjern M, Hagen K, Sand T (2009) The occipital alpha rhythm related to the migraine cycle and headache burden: a blinded, controlled longitudinal study. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol 120:464–471CrossRef
27.
go back to reference Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129(Pt 1):55–64PubMedCrossRef Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129(Pt 1):55–64PubMedCrossRef
28.
go back to reference Nyrke T, Kangasniemi P, Lang H (1990) Alpha rhythm in classical migraine (migraine with aura): abnormalities in the headache-free interval. Cephalalgia 10(4):177–181PubMedCrossRef Nyrke T, Kangasniemi P, Lang H (1990) Alpha rhythm in classical migraine (migraine with aura): abnormalities in the headache-free interval. Cephalalgia 10(4):177–181PubMedCrossRef
29.
30.
go back to reference Knyazeva MG, Barzegaran E, Vildavski VY, Demonet JF (2018) Aging of human alpha rhythm. Neurobiol Aging 69:261–273PubMedCrossRef Knyazeva MG, Barzegaran E, Vildavski VY, Demonet JF (2018) Aging of human alpha rhythm. Neurobiol Aging 69:261–273PubMedCrossRef
31.
go back to reference Chiang AKI, Rennie CJ, Robinson PA, van Albada SJ, Kerr CC (2011) Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol 122(8):1505–1517PubMedCrossRef Chiang AKI, Rennie CJ, Robinson PA, van Albada SJ, Kerr CC (2011) Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol 122(8):1505–1517PubMedCrossRef
32.
go back to reference Davidson RJ, Schwartz GE, Pugash E, Bromfield E (1976) Sex differences in patterns of EEG asymmetry. Biol Psychol 4(2):119–138PubMedCrossRef Davidson RJ, Schwartz GE, Pugash E, Bromfield E (1976) Sex differences in patterns of EEG asymmetry. Biol Psychol 4(2):119–138PubMedCrossRef
33.
go back to reference Colombo B, Dalla Libera D, Comi G (2011) Brain white matter lesions in migraine: what’s the meaning? Neurol Sci 32(1):37–40CrossRef Colombo B, Dalla Libera D, Comi G (2011) Brain white matter lesions in migraine: what’s the meaning? Neurol Sci 32(1):37–40CrossRef
34.
go back to reference Seeck M, Koessler L, Bast T, Leijten F, Michel C, Baumgartner C et al (2017) The standardized EEG electrode array of the IFCN. Clin Neurophysiol 128(10):2070–2077PubMedCrossRef Seeck M, Koessler L, Bast T, Leijten F, Michel C, Baumgartner C et al (2017) The standardized EEG electrode array of the IFCN. Clin Neurophysiol 128(10):2070–2077PubMedCrossRef
35.
go back to reference Choi S-H, Jeong G, Kim Y-B, Cho Z-H (2020) Proposal for human visual pathway in the extrastriate cortex by fiber tracking method using diffusion-weighted MRI. NeuroImage 220:117145PubMedCrossRef Choi S-H, Jeong G, Kim Y-B, Cho Z-H (2020) Proposal for human visual pathway in the extrastriate cortex by fiber tracking method using diffusion-weighted MRI. NeuroImage 220:117145PubMedCrossRef
37.
go back to reference Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17(1):26–49PubMedCrossRef Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17(1):26–49PubMedCrossRef
38.
go back to reference Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127(2):251–263PubMedCrossRef Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127(2):251–263PubMedCrossRef
39.
go back to reference Scherg M, Ille N, Bornfleth H, Berg P (2002) Advanced Tools for Digital EEG Review:: virtual source montages, whole-head mapping, correlation, and phase analysis. J Clin Neurophysiol 19(2):91–112PubMedCrossRef Scherg M, Ille N, Bornfleth H, Berg P (2002) Advanced Tools for Digital EEG Review:: virtual source montages, whole-head mapping, correlation, and phase analysis. J Clin Neurophysiol 19(2):91–112PubMedCrossRef
40.
go back to reference Rosenzweig I, Fogarasi A, Johnsen B, Alving J, Fabricius ME, Scherg M et al (2014) Beyond the double Banana: improved recognition of temporal lobe seizures in long-term EEG. J Clin Neurophysiol 31(1):1–9PubMedCrossRef Rosenzweig I, Fogarasi A, Johnsen B, Alving J, Fabricius ME, Scherg M et al (2014) Beyond the double Banana: improved recognition of temporal lobe seizures in long-term EEG. J Clin Neurophysiol 31(1):1–9PubMedCrossRef
41.
go back to reference Weiner KS, Zilles K (2016) The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83:48–62PubMedCrossRef Weiner KS, Zilles K (2016) The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83:48–62PubMedCrossRef
42.
go back to reference Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Géraud G (2011) A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3):213–218PubMedCrossRef Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Géraud G (2011) A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3):213–218PubMedCrossRef
43.
go back to reference Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S et al (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21(1):99–111PubMedCrossRef Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S et al (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21(1):99–111PubMedCrossRef
44.
go back to reference Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723PubMedCrossRef Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723PubMedCrossRef
45.
go back to reference Martins MJD, Krause C, Neville DA, Pino D, Villringer A, Obrig H (2019) Recursive hierarchical embedding in vision is impaired by posterior middle temporal gyrus lesions. Brain 142(10):3217–3229PubMedPubMedCentralCrossRef Martins MJD, Krause C, Neville DA, Pino D, Villringer A, Obrig H (2019) Recursive hierarchical embedding in vision is impaired by posterior middle temporal gyrus lesions. Brain 142(10):3217–3229PubMedPubMedCentralCrossRef
46.
go back to reference Davey J, Thompson HE, Hallam G, Karapanagiotidis T, Murphy C, De Caso I et al (2016) Exploring the role of the posterior middle temporal gyrus in semantic cognition: integration of anterior temporal lobe with executive processes. NeuroImage 137:165–177PubMedCrossRef Davey J, Thompson HE, Hallam G, Karapanagiotidis T, Murphy C, De Caso I et al (2016) Exploring the role of the posterior middle temporal gyrus in semantic cognition: integration of anterior temporal lobe with executive processes. NeuroImage 137:165–177PubMedCrossRef
47.
go back to reference Weisz N, Hartmann T, Müller N, Obleser J (2011) Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol. 2 Weisz N, Hartmann T, Müller N, Obleser J (2011) Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol. 2
48.
go back to reference Lauritzen TZ, D’Esposito M, Heeger DJ, Silver MA (2009) Top–down flow of visual spatial attention signals from parietal to occipital cortex. J Vis 9(13):18CrossRef Lauritzen TZ, D’Esposito M, Heeger DJ, Silver MA (2009) Top–down flow of visual spatial attention signals from parietal to occipital cortex. J Vis 9(13):18CrossRef
49.
go back to reference Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Josephs O, Deichmann R et al (2010) Studying the Role of Human Parietal Cortex in Visuospatial Attention with concurrent TMS–fMRI. Cereb Cortex 20(11):2702–2711PubMedPubMedCentralCrossRef Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Josephs O, Deichmann R et al (2010) Studying the Role of Human Parietal Cortex in Visuospatial Attention with concurrent TMS–fMRI. Cereb Cortex 20(11):2702–2711PubMedPubMedCentralCrossRef
50.
go back to reference Furman A, Prohorenko M, Keaser M, Zhang J, Chen S, Mazaheri A et al (2021) Prolonged Pain Reliably Slows Peak Alpha Frequency by Reducing Fast Alpha Power Furman A, Prohorenko M, Keaser M, Zhang J, Chen S, Mazaheri A et al (2021) Prolonged Pain Reliably Slows Peak Alpha Frequency by Reducing Fast Alpha Power
51.
go back to reference Samaha J, Postle Bradley R (2015) The speed of Alpha-Band oscillations predicts the temporal resolution of visual perception. Curr Biol 25(22):2985–2990PubMedPubMedCentralCrossRef Samaha J, Postle Bradley R (2015) The speed of Alpha-Band oscillations predicts the temporal resolution of visual perception. Curr Biol 25(22):2985–2990PubMedPubMedCentralCrossRef
53.
go back to reference Schreckenberger M, Lange-Asschenfeld C, Lochmann M, Mann K, Siessmeier T, Buchholz H-G et al (2004) The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage 22(2):637–644PubMedCrossRef Schreckenberger M, Lange-Asschenfeld C, Lochmann M, Mann K, Siessmeier T, Buchholz H-G et al (2004) The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage 22(2):637–644PubMedCrossRef
54.
go back to reference Younis S, Hougaard A, Noseda R, Ashina M (2019) Current understanding of thalamic structure and function in migraine. Cephalalgia 39(13):1675–1682PubMedCrossRef Younis S, Hougaard A, Noseda R, Ashina M (2019) Current understanding of thalamic structure and function in migraine. Cephalalgia 39(13):1675–1682PubMedCrossRef
55.
go back to reference Lauschke JL, Plant GT, Fraser CL (2016) Visual snow: a thalamocortical dysrhythmia of the visual pathway? J Clin Neurosci 28:123–127PubMedCrossRef Lauschke JL, Plant GT, Fraser CL (2016) Visual snow: a thalamocortical dysrhythmia of the visual pathway? J Clin Neurosci 28:123–127PubMedCrossRef
56.
go back to reference Strik M, Clough M, Solly EJ, Glarin R, White OB, Kolbe SC et al (2022) Microstructure in patients with visual snow syndrome: an ultra-high field morphological and quantitative MRI study. Brain Commun 4(4):fcac164PubMedPubMedCentralCrossRef Strik M, Clough M, Solly EJ, Glarin R, White OB, Kolbe SC et al (2022) Microstructure in patients with visual snow syndrome: an ultra-high field morphological and quantitative MRI study. Brain Commun 4(4):fcac164PubMedPubMedCentralCrossRef
57.
go back to reference Halgren M, Ulbert I, Bastuji H, Fabó D, Erőss L, Rey M et al (2019) The generation and propagation of the human alpha rhythm. Proc Natl Acad Sci 116(47):23772–23782PubMedPubMedCentralCrossRef Halgren M, Ulbert I, Bastuji H, Fabó D, Erőss L, Rey M et al (2019) The generation and propagation of the human alpha rhythm. Proc Natl Acad Sci 116(47):23772–23782PubMedPubMedCentralCrossRef
58.
go back to reference Ciulla C, Takeda T, Endo H (1999) MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topogr 11(3):211–222PubMedCrossRef Ciulla C, Takeda T, Endo H (1999) MEG characterization of spontaneous alpha rhythm in the human brain. Brain Topogr 11(3):211–222PubMedCrossRef
59.
go back to reference Kondziella D, Olsen MH, Dreier JP (2020) Prevalence of visual snow syndrome in the UK. Eur J Neurol 27(5):764–772PubMedCrossRef Kondziella D, Olsen MH, Dreier JP (2020) Prevalence of visual snow syndrome in the UK. Eur J Neurol 27(5):764–772PubMedCrossRef
61.
go back to reference Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A et al (2024) Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 160:113–120PubMedCrossRef Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A et al (2024) Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 160:113–120PubMedCrossRef
62.
go back to reference Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M et al (2021) Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun 12(1):3151PubMedPubMedCentralCrossRef Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M et al (2021) Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun 12(1):3151PubMedPubMedCentralCrossRef
63.
go back to reference Lin Y-J, Shukla L, Dugué L, Valero-Cabré A, Carrasco M (2021) Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex. Sci Rep 11(1):18562PubMedPubMedCentralCrossRef Lin Y-J, Shukla L, Dugué L, Valero-Cabré A, Carrasco M (2021) Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex. Sci Rep 11(1):18562PubMedPubMedCentralCrossRef
64.
go back to reference Johnson RK, Meyer RG (1974) The locus of control construct in EEG alpha rhythm feedback. J Consult Clin Psychol 42(6):913PubMedCrossRef Johnson RK, Meyer RG (1974) The locus of control construct in EEG alpha rhythm feedback. J Consult Clin Psychol 42(6):913PubMedCrossRef
65.
go back to reference Kerr CE, Sacchet MD, Lazar SW, Moore CI, Jones SR (2013) Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front Hum Neurosci 7:12PubMedPubMedCentralCrossRef Kerr CE, Sacchet MD, Lazar SW, Moore CI, Jones SR (2013) Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front Hum Neurosci 7:12PubMedPubMedCentralCrossRef
66.
go back to reference Bobat H, Healy D, Lochhead J (2023) Comment on ‘visual snow syndrome and migraine: a review’. Eye Bobat H, Healy D, Lochhead J (2023) Comment on ‘visual snow syndrome and migraine: a review’. Eye
67.
go back to reference Eren OE, Schöberl F, Schankin CJ, Straube A (2021) Visual snow syndrome after start of citalopram-novel insights into underlying pathophysiology. Eur J Clin Pharmacol 77(2):271–272PubMedCrossRef Eren OE, Schöberl F, Schankin CJ, Straube A (2021) Visual snow syndrome after start of citalopram-novel insights into underlying pathophysiology. Eur J Clin Pharmacol 77(2):271–272PubMedCrossRef
68.
go back to reference Puledda F, Dipasquale O, Gooddy BJM, Karsan N, Bose R, Mehta MA et al (2023) Abnormal glutamatergic and serotonergic connectivity in Visual Snow Syndrome and Migraine with Aura. Ann Neurol 94(5):873–884PubMedCrossRef Puledda F, Dipasquale O, Gooddy BJM, Karsan N, Bose R, Mehta MA et al (2023) Abnormal glutamatergic and serotonergic connectivity in Visual Snow Syndrome and Migraine with Aura. Ann Neurol 94(5):873–884PubMedCrossRef
Metadata
Title
Alterations of the alpha rhythm in visual snow syndrome: a case-control study
Authors
Antonia Klein
Sarah A. Aeschlimann
Frederic Zubler
Adrian Scutelnic
Franz Riederer
Matthias Ertl
Christoph J. Schankin
Publication date
01-12-2024
Publisher
Springer Milan
Keyword
Migraine
Published in
The Journal of Headache and Pain / Issue 1/2024
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-024-01754-x

Other articles of this Issue 1/2024

The Journal of Headache and Pain 1/2024 Go to the issue