Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

miFRame: analysis and visualization of miRNA sequencing data in neurological disorders

Authors: Christina Backes, Jan Haas, Petra Leidinger, Karen Frese, Thomas Großmann, Klemens Ruprecht, Benjamin Meder, Eckart Meese, Andreas Keller

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

While in the past decades nucleic acid analysis has been predominantly carried out using quantitative low- and high-throughput approaches such as qRT-PCR and microarray technology, next-generation sequencing (NGS) with its single base resolution is now frequently applied in DNA and RNA testing. Especially for small non-coding RNAs such as microRNAs there is a need for analysis and visualization tools that facilitate interpretation of the results also for clinicians.

Methods

We developed miFRame, which supports the analysis of human small RNA NGS data. Our tool carries out different data analyses for known as well as predicted novel mature microRNAs from known precursors and presents the results in a well interpretable manner. Analyses include among others expression analysis of precursors and mature miRNAs, detection of novel precursors and detection of potential iso-microRNAs. Aggregation of results from different users moreover allows for evaluation whether remarkable results, such as novel mature miRNAs, are indeed specific for the respective experimental set-up or are frequently detected across a broad range of experiments.

Results

We demonstrate the capabilities of miFRame, which is freely available at http://​www.​ccb.​uni-saarland.​de/​miframe on two studies, circulating biomarker screening for Multiple Sclerosis (cohort includes clinically isolated syndrome, relapse remitting MS, matched controls) as well as Alzheimer Disease (cohort includes Alzheimer Disease, Mild Cognitive Impairment, matched controls). Here, our tool allowed for an improved biomarker discovery by identifying likely false positive marker candidates.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinform 10:328CrossRef Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinform 10:328CrossRef
2.
go back to reference Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138PubMedCentralPubMedCrossRef Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138PubMedCentralPubMedCrossRef
3.
go back to reference Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76PubMedCentralPubMedCrossRef Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76PubMedCentralPubMedCrossRef
4.
go back to reference Pantano L, Estivill X, Marti E (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 38:e34PubMedCentralPubMedCrossRef Pantano L, Estivill X, Marti E (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 38:e34PubMedCentralPubMedCrossRef
5.
go back to reference Wu J, Liu Q, Wang X, Zheng J, Wang T, You M et al (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092PubMedCentralPubMedCrossRef Wu J, Liu Q, Wang X, Zheng J, Wang T, You M et al (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092PubMedCentralPubMedCrossRef
6.
go back to reference Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X et al (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38:W392–W397PubMedCentralPubMedCrossRef Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X et al (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38:W392–W397PubMedCentralPubMedCrossRef
7.
go back to reference Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S (2011) DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 39(Web Server issue):W112–W117. doi:10.1093/nar/gkr357 Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S (2011) DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 39(Web Server issue):W112–W117. doi:10.​1093/​nar/​gkr357
8.
go back to reference Zhao W, Liu W, Tian D, Tang B, Wang Y, Yu C et al (2011) wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 27:3076–3077PubMedCrossRef Zhao W, Liu W, Tian D, Tang B, Wang Y, Yu C et al (2011) wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 27:3076–3077PubMedCrossRef
9.
go back to reference Yuan T, Huang X, Dittmar RL, Du M, Kohli M, Boardman L et al (2014) eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing. BMC Genom 15:176CrossRef Yuan T, Huang X, Dittmar RL, Du M, Kohli M, Boardman L et al (2014) eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing. BMC Genom 15:176CrossRef
10.
go back to reference Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genom 11:716CrossRef Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genom 11:716CrossRef
11.
go back to reference Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotech 26:407–415CrossRef Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotech 26:407–415CrossRef
13.
go back to reference Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X et al (2012) CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics 28:1925–1927PubMedCrossRef Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X et al (2012) CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics 28:1925–1927PubMedCrossRef
14.
go back to reference Muller S, Rycak L, Winter P, Kahl G, Koch I, Rotter B (2013) omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 29:2651–2652PubMedCrossRef Muller S, Rycak L, Winter P, Kahl G, Koch I, Rotter B (2013) omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 29:2651–2652PubMedCrossRef
15.
go back to reference Seguin J, Otten P, Baerlocher L, Farinelli L, Pooggin MM (2014) MISIS: a bioinformatics tool to view and analyze maps of small RNAs derived from viruses and genomic loci generating multiple small RNAs. J Virol Methods 195:120–122PubMedCrossRef Seguin J, Otten P, Baerlocher L, Farinelli L, Pooggin MM (2014) MISIS: a bioinformatics tool to view and analyze maps of small RNAs derived from viruses and genomic loci generating multiple small RNAs. J Virol Methods 195:120–122PubMedCrossRef
16.
go back to reference Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78PubMedCentralPubMedCrossRef Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78PubMedCentralPubMedCrossRef
17.
go back to reference Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G et al (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20:295–303PubMedCrossRef Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G et al (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20:295–303PubMedCrossRef
18.
go back to reference Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y et al (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112:E1106–E1115PubMedCentralPubMedCrossRef Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y et al (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112:E1106–E1115PubMedCentralPubMedCrossRef
Metadata
Title
miFRame: analysis and visualization of miRNA sequencing data in neurological disorders
Authors
Christina Backes
Jan Haas
Petra Leidinger
Karen Frese
Thomas Großmann
Klemens Ruprecht
Benjamin Meder
Eckart Meese
Andreas Keller
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0594-x

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.