Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 2/2018

Open Access 01-04-2018

MicroRNAs: New Therapeutic Targets for Familial Hypercholesterolemia?

Authors: Amir Abbas Momtazi, Maciej Banach, Matteo Pirro, Evan A. Stein, Amirhossein Sahebkar

Published in: Clinical Reviews in Allergy & Immunology | Issue 2/2018

Login to get access

Abstract

Familial hypercholesterolemia (FH) is the most common inherited form of dyslipidemia and a major cause of premature cardiovascular disease. Management of FH mainly relies on the efficiency of treatments that reduce plasma low-density lipoprotein (LDL) cholesterol (LDL-C) concentrations. MicroRNAs (miRs) have been suggested as emerging regulators of plasma LDL-C concentrations. Notably, there is evidence showing that miRs can regulate the post-transcriptional expression of genes involved in the pathogenesis of FH, including LDLR, APOB, PCSK9, and LDLRAP1. In addition, many miRs are located in genomic loci associated with abnormal levels of circulating lipids and lipoproteins in human plasma. The strong regulatory effects of miRs on the expression of FH-associated genes support of the notion that manipulation of miRs might serve as a potential novel therapeutic approach. The present review describes miRs-targeting FH-associated genes that could be used as potential therapeutic targets in patients with FH or other severe dyslipidemias.
Literature
1.
2.
go back to reference Collaboration, E.A.S.F.H.S et al (2016) Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS familial Hypercholesterolaemia studies collaboration. Atheroscler Suppl 22:1–32CrossRef Collaboration, E.A.S.F.H.S et al (2016) Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS familial Hypercholesterolaemia studies collaboration. Atheroscler Suppl 22:1–32CrossRef
3.
go back to reference Vallejo-Vaz AJ et al (2015) Familial hypercholesterolaemia: a global call to arms. Atherosclerosis 243(1):257–259CrossRefPubMed Vallejo-Vaz AJ et al (2015) Familial hypercholesterolaemia: a global call to arms. Atherosclerosis 243(1):257–259CrossRefPubMed
4.
go back to reference Anderson TJ et al (2013) 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 29(2):151–167CrossRefPubMed Anderson TJ et al (2013) 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 29(2):151–167CrossRefPubMed
6.
go back to reference Cuchel M et al (2014) Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J 35(32):2146–2157CrossRefPubMedPubMedCentral Cuchel M et al (2014) Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J 35(32):2146–2157CrossRefPubMedPubMedCentral
7.
go back to reference Nordestgaard BG et al (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. Eur Heart J 34(45):3478–3490CrossRefPubMedPubMedCentral Nordestgaard BG et al (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. Eur Heart J 34(45):3478–3490CrossRefPubMedPubMedCentral
8.
go back to reference Cannon CP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372(25):2387–2397CrossRefPubMed Cannon CP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372(25):2387–2397CrossRefPubMed
9.
go back to reference Catapano AL et al (2016) 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 37(39):2999–3058CrossRefPubMed Catapano AL et al (2016) 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 37(39):2999–3058CrossRefPubMed
10.
go back to reference Banach M et al (2017) PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch Med Sci 13(1):1–45CrossRefPubMed Banach M et al (2017) PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch Med Sci 13(1):1–45CrossRefPubMed
11.
go back to reference de Goma EM et al (2016) Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH Registry. Circ Cardiovasc Genet 9(3):240–249CrossRef de Goma EM et al (2016) Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH Registry. Circ Cardiovasc Genet 9(3):240–249CrossRef
12.
go back to reference Marais AD et al (2008) A dose-titration and comparative study of rosuvastatin and atorvastatin in patients with homozygous familial hypercholesterolaemia. Atherosclerosis 197(1):400–406CrossRefPubMed Marais AD et al (2008) A dose-titration and comparative study of rosuvastatin and atorvastatin in patients with homozygous familial hypercholesterolaemia. Atherosclerosis 197(1):400–406CrossRefPubMed
13.
go back to reference Raal FJ et al (1997) Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis 135(2):249–256CrossRefPubMed Raal FJ et al (1997) Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis 135(2):249–256CrossRefPubMed
14.
go back to reference Gagné C et al (2002) Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 105(21):2469–2475CrossRefPubMed Gagné C et al (2002) Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 105(21):2469–2475CrossRefPubMed
15.
16.
go back to reference Consortium EP (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science 306(5696):636–640CrossRef Consortium EP (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science 306(5696):636–640CrossRef
19.
go back to reference Deng Y et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227CrossRefPubMed Deng Y et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227CrossRefPubMed
21.
go back to reference Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184CrossRefPubMed Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184CrossRefPubMed
23.
go back to reference Pecot CV et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11(1):59–67CrossRefPubMed Pecot CV et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11(1):59–67CrossRefPubMed
24.
go back to reference Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17(3):118–126CrossRefPubMed Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17(3):118–126CrossRefPubMed
25.
go back to reference Petersen CP et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542CrossRefPubMed Petersen CP et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542CrossRefPubMed
26.
go back to reference Schultheis B et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148CrossRefPubMed Schultheis B et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148CrossRefPubMed
27.
go back to reference Tabernero J et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417CrossRefPubMed Tabernero J et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417CrossRefPubMed
29.
go back to reference Momtazi AA et al. (2016) Curcumin as a MicroRNA regulator in cancer: a review Momtazi AA et al. (2016) Curcumin as a MicroRNA regulator in cancer: a review
30.
go back to reference DeVincenzo J et al (2010) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci 107(19):8800–8805CrossRefPubMedPubMedCentral DeVincenzo J et al (2010) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci 107(19):8800–8805CrossRefPubMedPubMedCentral
31.
go back to reference Chandra PK et al (2012) Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol Ther 20(9):1724–1736CrossRefPubMedPubMedCentral Chandra PK et al (2012) Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol Ther 20(9):1724–1736CrossRefPubMedPubMedCentral
32.
go back to reference Sendi H et al (2015) miR-122 decreases HCV entry into hepatocytes through binding to the 3′ UTR of OCLN mRNA. Liver Int 35(4):1315–1323CrossRefPubMed Sendi H et al (2015) miR-122 decreases HCV entry into hepatocytes through binding to the 3′ UTR of OCLN mRNA. Liver Int 35(4):1315–1323CrossRefPubMed
33.
go back to reference Erdmann VA, Poller W, and Barciszewski J (2008) RNA technologies in cardiovascular medicine and research. Springer Erdmann VA, Poller W, and Barciszewski J (2008) RNA technologies in cardiovascular medicine and research. Springer
34.
go back to reference Fitzgerald K et al (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376(1):41–51CrossRefPubMed Fitzgerald K et al (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376(1):41–51CrossRefPubMed
36.
go back to reference Ray KK, et al. (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med Ray KK, et al. (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med
37.
go back to reference van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507CrossRefPubMed van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507CrossRefPubMed
40.
41.
go back to reference Birmingham A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3(3):199–204CrossRefPubMed Birmingham A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3(3):199–204CrossRefPubMed
43.
go back to reference Grimm D et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541CrossRefPubMed Grimm D et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541CrossRefPubMed
45.
go back to reference Goedeke L et al (2016) miRNA regulation of LDL-cholesterol metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1861(12):2047–2052 Goedeke L et al (2016) miRNA regulation of LDL-cholesterol metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1861(12):2047–2052
47.
go back to reference Martino F et al (2015) Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci 129(11):963–972CrossRef Martino F et al (2015) Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci 129(11):963–972CrossRef
48.
go back to reference Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495CrossRefPubMed Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495CrossRefPubMed
49.
go back to reference Sahebkar A et al (2016) Editorial: microRNA-33 inhibition: a potential adjunct to statin therapy? Curr Vasc Pharmacol 14(4):321–322CrossRefPubMed Sahebkar A et al (2016) Editorial: microRNA-33 inhibition: a potential adjunct to statin therapy? Curr Vasc Pharmacol 14(4):321–322CrossRefPubMed
50.
go back to reference Bouchie A (2013) First microRNA mimic enters clinic, Nature Research Bouchie A (2013) First microRNA mimic enters clinic, Nature Research
51.
go back to reference Qiu Z, Dai Y (2014) Roadmap of miR-122-related clinical application from bench to bedside. Expert Opin Investig Drugs 23(3):347–355CrossRefPubMed Qiu Z, Dai Y (2014) Roadmap of miR-122-related clinical application from bench to bedside. Expert Opin Investig Drugs 23(3):347–355CrossRefPubMed
52.
go back to reference Van Rooij E and Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO molecular medicine, p. e201100899 Van Rooij E and Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO molecular medicine, p. e201100899
53.
go back to reference Soria LF et al (1989) Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci 86(2):587–591CrossRefPubMedPubMedCentral Soria LF et al (1989) Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci 86(2):587–591CrossRefPubMedPubMedCentral
54.
go back to reference Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nature clinical practice Cardiovascular medicine 4(4):214–225CrossRefPubMed Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nature clinical practice Cardiovascular medicine 4(4):214–225CrossRefPubMed
56.
go back to reference Alvarez ML et al (2015) MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 242(2):595–604CrossRefPubMedPubMedCentral Alvarez ML et al (2015) MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 242(2):595–604CrossRefPubMedPubMedCentral
57.
go back to reference Goedeke L et al (2015) miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 243(2):499–509CrossRefPubMedPubMedCentral Goedeke L et al (2015) miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 243(2):499–509CrossRefPubMedPubMedCentral
58.
59.
60.
go back to reference Jiang H et al (2015) microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 243(2):523–532CrossRefPubMed Jiang H et al (2015) microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 243(2):523–532CrossRefPubMed
61.
go back to reference Bai J et al. (2016) A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget Bai J et al. (2016) A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget
62.
go back to reference He M et al (2017) Pro-inflammation NF-kappaB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells. J Exp Clin Cancer Res 36(1):15CrossRefPubMedPubMedCentral He M et al (2017) Pro-inflammation NF-kappaB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells. J Exp Clin Cancer Res 36(1):15CrossRefPubMedPubMedCentral
63.
go back to reference Li Y et al (2016) MicroRNA-132 cause apoptosis of glioma cells through blockade of the SREBP-1c metabolic pathway related to SIRT1. Biomed Pharmacother 78:177–184CrossRefPubMed Li Y et al (2016) MicroRNA-132 cause apoptosis of glioma cells through blockade of the SREBP-1c metabolic pathway related to SIRT1. Biomed Pharmacother 78:177–184CrossRefPubMed
64.
go back to reference Zhang H et al (2014) MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int J Oncol 45(5):2143–2152CrossRefPubMed Zhang H et al (2014) MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int J Oncol 45(5):2143–2152CrossRefPubMed
65.
go back to reference Li X et al (2013) MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 8(8):e70987CrossRefPubMedPubMedCentral Li X et al (2013) MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 8(8):e70987CrossRefPubMedPubMedCentral
66.
go back to reference Yang M et al (2014) Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 55(2):226–238CrossRefPubMedPubMedCentral Yang M et al (2014) Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 55(2):226–238CrossRefPubMedPubMedCentral
67.
go back to reference Xu Y et al. (2015) A metabolic stress-inducible miR-34a-HNF4 [alpha] pathway regulates lipid and lipoprotein metabolism. Nature communications, 6 Xu Y et al. (2015) A metabolic stress-inducible miR-34a-HNF4 [alpha] pathway regulates lipid and lipoprotein metabolism. Nature communications, 6
68.
go back to reference Soh J, Hussain MM (2013) Supplementary site interactions are critical for the regulation of microsomal triglyceride transfer protein by microRNA-30c. Nutrition & metabolism 10(1):56CrossRef Soh J, Hussain MM (2013) Supplementary site interactions are critical for the regulation of microsomal triglyceride transfer protein by microRNA-30c. Nutrition & metabolism 10(1):56CrossRef
69.
go back to reference Soh J et al (2013) MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 19(7):892–900CrossRefPubMedPubMedCentral Soh J et al (2013) MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 19(7):892–900CrossRefPubMedPubMedCentral
70.
71.
go back to reference Esau C et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98CrossRefPubMed Esau C et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98CrossRefPubMed
72.
go back to reference Zhang L et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107–126CrossRefPubMed Zhang L et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107–126CrossRefPubMed
73.
go back to reference Seidah NG (2016) New developments in proprotein convertase subtilisin-kexin 9’s biology and clinical implications. Curr Opin Lipidol 27(3):274–281CrossRefPubMed Seidah NG (2016) New developments in proprotein convertase subtilisin-kexin 9’s biology and clinical implications. Curr Opin Lipidol 27(3):274–281CrossRefPubMed
74.
go back to reference Paciullo F, et al. (2017) PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol Paciullo F, et al. (2017) PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol
75.
go back to reference Momtazi AA, Banach M, Sahebkar A (2017) PCSK9 inhibitors in sepsis: a new potential indication? Expert Opin Investig Drugs 26(2):137–139CrossRefPubMed Momtazi AA, Banach M, Sahebkar A (2017) PCSK9 inhibitors in sepsis: a new potential indication? Expert Opin Investig Drugs 26(2):137–139CrossRefPubMed
76.
go back to reference Momtazi AA, et al. (2017) PCSK9 and diabetes: is there a link? Drug Discovery Today Momtazi AA, et al. (2017) PCSK9 and diabetes: is there a link? Drug Discovery Today
77.
go back to reference Momtazi AA, Banach M, and Sahebkar A (2017) PCSK9 inhibitors in sepsis: a new potential indication?, Taylor & Francis Momtazi AA, Banach M, and Sahebkar A (2017) PCSK9 inhibitors in sepsis: a new potential indication?, Taylor & Francis
78.
go back to reference Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156CrossRefPubMed Abifadel M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156CrossRefPubMed
79.
go back to reference Cohen J et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165CrossRefPubMed Cohen J et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165CrossRefPubMed
80.
go back to reference Cohen JC et al (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272CrossRefPubMed Cohen JC et al (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272CrossRefPubMed
81.
go back to reference Zhao Z et al (2006) Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 79(3):514–523CrossRefPubMedPubMedCentral Zhao Z et al (2006) Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 79(3):514–523CrossRefPubMedPubMedCentral
82.
go back to reference Hooper AJ et al (2007) The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193(2):445–448CrossRefPubMed Hooper AJ et al (2007) The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193(2):445–448CrossRefPubMed
83.
go back to reference Robinson JG et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1489–1499CrossRefPubMed Robinson JG et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1489–1499CrossRefPubMed
84.
go back to reference Sabatine MS et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1500–1509CrossRefPubMed Sabatine MS et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1500–1509CrossRefPubMed
85.
go back to reference Sabatine MS, et al. (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med Sabatine MS, et al. (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med
86.
go back to reference Hooper AJ, Burnett JR (2013) Anti-PCSK9 therapies for the treatment of hypercholesterolemia. Expert Opin Biol Ther 13(3):429–435CrossRefPubMed Hooper AJ, Burnett JR (2013) Anti-PCSK9 therapies for the treatment of hypercholesterolemia. Expert Opin Biol Ther 13(3):429–435CrossRefPubMed
87.
go back to reference Navarese EP et al (2015) Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia. A systematic review and meta-analysis effects of PCSK9 antibodies in adults with hypercholesterolemia. Ann Intern Med 163(1):40–51CrossRefPubMed Navarese EP et al (2015) Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia. A systematic review and meta-analysis effects of PCSK9 antibodies in adults with hypercholesterolemia. Ann Intern Med 163(1):40–51CrossRefPubMed
88.
89.
go back to reference Kazi DS et al (2016) Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA 316(7):743–753CrossRefPubMed Kazi DS et al (2016) Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA 316(7):743–753CrossRefPubMed
90.
91.
go back to reference Zambrano T et al (2015) Impact of 3’UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in Brazilian subjects: a pilot study. Int J Clin Exp Med 8(4):5978PubMedPubMedCentral Zambrano T et al (2015) Impact of 3’UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in Brazilian subjects: a pilot study. Int J Clin Exp Med 8(4):5978PubMedPubMedCentral
92.
go back to reference Cornier M-A, Eckel RH (2014) Non-traditional dosing of statins in statin-intolerant patients—is it worth a try? Current Atherosclerosis Reports 17(2):475CrossRef Cornier M-A, Eckel RH (2014) Non-traditional dosing of statins in statin-intolerant patients—is it worth a try? Current Atherosclerosis Reports 17(2):475CrossRef
93.
go back to reference Finkel JB, Duffy D (2015) 2013 ACC/AHA cholesterol treatment guideline: paradigm shifts in managing atherosclerotic cardiovascular disease risk. Trends in Cardiovascular Medicine 25(4):340–347CrossRefPubMed Finkel JB, Duffy D (2015) 2013 ACC/AHA cholesterol treatment guideline: paradigm shifts in managing atherosclerotic cardiovascular disease risk. Trends in Cardiovascular Medicine 25(4):340–347CrossRefPubMed
94.
go back to reference Raal FJ, Blom DJ Anacetrapib in familial hypercholesterolaemia: pros and cons. Lancet 385(9983):2124–2126 Raal FJ, Blom DJ Anacetrapib in familial hypercholesterolaemia: pros and cons. Lancet 385(9983):2124–2126
95.
go back to reference Raal FJ et al (2016) Pediatric experience with mipomersen as adjunctive therapy for homozygous familial hypercholesterolemia. Journal of clinical lipidology 10(4):860–869CrossRefPubMed Raal FJ et al (2016) Pediatric experience with mipomersen as adjunctive therapy for homozygous familial hypercholesterolemia. Journal of clinical lipidology 10(4):860–869CrossRefPubMed
96.
go back to reference McGowan MP, Moriarty PM, Backes JM (2014) The effects of mipomersen, a second-generation antisense oligonucleotide, on atherogenic (apoB-containing) lipoproteins in the treatment of homozygous familial hypercholesterolemia. Clinical Lipidology 9(5):487–503CrossRef McGowan MP, Moriarty PM, Backes JM (2014) The effects of mipomersen, a second-generation antisense oligonucleotide, on atherogenic (apoB-containing) lipoproteins in the treatment of homozygous familial hypercholesterolemia. Clinical Lipidology 9(5):487–503CrossRef
97.
go back to reference Rader DJ, Kastelein JJP (2014) Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 129(9):1022–1032CrossRefPubMed Rader DJ, Kastelein JJP (2014) Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 129(9):1022–1032CrossRefPubMed
98.
go back to reference Gouni-Berthold I, Berthold HK (2015) Mipomersen and lomitapide: two new drugs for the treatment of homozygous familial hypercholesterolemia. Atheroscler Suppl 18:28–34CrossRefPubMed Gouni-Berthold I, Berthold HK (2015) Mipomersen and lomitapide: two new drugs for the treatment of homozygous familial hypercholesterolemia. Atheroscler Suppl 18:28–34CrossRefPubMed
99.
go back to reference Cuchel M, Blom DJ, Averna MR (2014) Clinical experience of lomitapide therapy in patients with homozygous familial hypercholesterolaemia. Atheroscler Suppl 15(2):33–45CrossRefPubMed Cuchel M, Blom DJ, Averna MR (2014) Clinical experience of lomitapide therapy in patients with homozygous familial hypercholesterolaemia. Atheroscler Suppl 15(2):33–45CrossRefPubMed
100.
101.
go back to reference Sheena V et al (2005) Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4α. J Lipid Res 46(2):328–341CrossRefPubMed Sheena V et al (2005) Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4α. J Lipid Res 46(2):328–341CrossRefPubMed
102.
go back to reference Hirokane H et al (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279(44):45685–45692CrossRefPubMed Hirokane H et al (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279(44):45685–45692CrossRefPubMed
103.
go back to reference Choi SE et al (2013) Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12(6):1062–1072CrossRefPubMed Choi SE et al (2013) Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12(6):1062–1072CrossRefPubMed
104.
go back to reference Hussain MM et al (2012) Multiple functions of microsomal triglyceride transfer protein. Nutrition & metabolism 9(1):14CrossRef Hussain MM et al (2012) Multiple functions of microsomal triglyceride transfer protein. Nutrition & metabolism 9(1):14CrossRef
105.
go back to reference Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44(1):22–32CrossRefPubMed Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44(1):22–32CrossRefPubMed
106.
go back to reference Zhou L et al (2016) MicroRNAs regulating apolipoprotein B-containing lipoprotein production. Biochimica et Biophysica Acta (BBA)-molecular and cell biology of lipids 1861(12):2062–2068 Zhou L et al (2016) MicroRNAs regulating apolipoprotein B-containing lipoprotein production. Biochimica et Biophysica Acta (BBA)-molecular and cell biology of lipids 1861(12):2062–2068
107.
go back to reference Soutar AK, Naoumova RP, Traub LM (2003) Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 23(11):1963–1970CrossRefPubMed Soutar AK, Naoumova RP, Traub LM (2003) Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 23(11):1963–1970CrossRefPubMed
Metadata
Title
MicroRNAs: New Therapeutic Targets for Familial Hypercholesterolemia?
Authors
Amir Abbas Momtazi
Maciej Banach
Matteo Pirro
Evan A. Stein
Amirhossein Sahebkar
Publication date
01-04-2018
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 2/2018
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-017-8611-x

Other articles of this Issue 2/2018

Clinical Reviews in Allergy & Immunology 2/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine