Skip to main content
Top
Published in: Acta Diabetologica 3/2015

01-06-2015 | Original Article

MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion

Authors: Guido Sebastiani, Agnese Po, Evelina Miele, Giuliana Ventriglia, Elena Ceccarelli, Marco Bugliani, Lorella Marselli, Piero Marchetti, Alberto Gulino, Elisabetta Ferretti, Francesco Dotta

Published in: Acta Diabetologica | Issue 3/2015

Login to get access

Abstract

Aims

MicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors.

Methods

We analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets.

Results

We identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay.

Conclusions

We uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kahn SE (2003) The relative contributions of insulin resistance and beta cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19CrossRefPubMed Kahn SE (2003) The relative contributions of insulin resistance and beta cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19CrossRefPubMed
3.
go back to reference Maris M, Ferreira GB, D’Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C (2010) High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach. J Proteome Res 9:6274–6287CrossRefPubMed Maris M, Ferreira GB, D’Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C (2010) High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach. J Proteome Res 9:6274–6287CrossRefPubMed
4.
go back to reference Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945CrossRefPubMed Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945CrossRefPubMed
5.
go back to reference Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113CrossRefPubMed Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113CrossRefPubMed
6.
go back to reference Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60:1825–1831CrossRefPubMedCentralPubMed Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60:1825–1831CrossRefPubMedCentralPubMed
7.
go back to reference Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y et al (2011) miRNAs control insulin content in pancreatic beta cells via downregulation of transcriptional repressors. EMBO J 30:835–845CrossRefPubMedCentralPubMed Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y et al (2011) miRNAs control insulin content in pancreatic beta cells via downregulation of transcriptional repressors. EMBO J 30:835–845CrossRefPubMedCentralPubMed
8.
go back to reference Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, Speidel D, Holmberg D, Mayans S, Khoo NK et al (2011) Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166CrossRefPubMedCentralPubMed Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, Speidel D, Holmberg D, Mayans S, Khoo NK et al (2011) Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166CrossRefPubMedCentralPubMed
9.
go back to reference Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613CrossRefPubMedCentralPubMed Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613CrossRefPubMedCentralPubMed
10.
go back to reference Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2011) MicroRNA-144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6:e22839CrossRefPubMedCentralPubMed Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2011) MicroRNA-144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6:e22839CrossRefPubMedCentralPubMed
11.
go back to reference Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56(10):2203–2212CrossRefPubMed Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56(10):2203–2212CrossRefPubMed
12.
go back to reference Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Mecdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMed Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Mecdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMed
13.
go back to reference Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4:e5033CrossRefPubMedCentralPubMed Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4:e5033CrossRefPubMedCentralPubMed
14.
go back to reference Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem 389:305–312CrossRefPubMed Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem 389:305–312CrossRefPubMed
15.
go back to reference Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH (2002) FoxA2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 51:2546–2551CrossRefPubMed Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH (2002) FoxA2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 51:2546–2551CrossRefPubMed
16.
go back to reference Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Obberghen Van (2007) MicroRNA-124a regulates FoxA2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588CrossRefPubMed Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Obberghen Van (2007) MicroRNA-124a regulates FoxA2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588CrossRefPubMed
17.
go back to reference Folli F, Okada T, Perego C, Gunton J, Liew CW (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6:e28050CrossRefPubMedCentralPubMed Folli F, Okada T, Perego C, Gunton J, Liew CW (2011) Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6:e28050CrossRefPubMedCentralPubMed
18.
go back to reference Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55(12):3262–3272CrossRefPubMed Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55(12):3262–3272CrossRefPubMed
19.
go back to reference Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132CrossRefPubMed Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132CrossRefPubMed
20.
go back to reference Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396CrossRefPubMedCentralPubMed Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396CrossRefPubMedCentralPubMed
21.
go back to reference Marselli L, Dotta F, Piro S, Santangelo C, Masini M (2001) Th2 cytokines have a partial, direct protective effect on the function and survival of isolated human islets exposed to combined proinflammatory and Th1 cytokines. J Clin Endocrinol Metab 86:4974–4978CrossRefPubMed Marselli L, Dotta F, Piro S, Santangelo C, Masini M (2001) Th2 cytokines have a partial, direct protective effect on the function and survival of isolated human islets exposed to combined proinflammatory and Th1 cytokines. J Clin Endocrinol Metab 86:4974–4978CrossRefPubMed
22.
go back to reference Masini M, Anello M, Bugliani M, Marselli L, Filipponi F, Boggi U, Purrello F, Occhipinti M, Martino L, Marchetti P, De Tata V (2014) Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Res Clin Pract 104(1):163–170CrossRefPubMed Masini M, Anello M, Bugliani M, Marselli L, Filipponi F, Boggi U, Purrello F, Occhipinti M, Martino L, Marchetti P, De Tata V (2014) Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Res Clin Pract 104(1):163–170CrossRefPubMed
23.
go back to reference Marselli L, Suleiman M, Masini M, Campani D, Bugliani M, Syed F, Martino L, Focosi D, Scatena F, Olimpico F, Filipponi F, Masiello P, Boggi U, Marchetti P (2014) Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 57(2):362–365CrossRefPubMed Marselli L, Suleiman M, Masini M, Campani D, Bugliani M, Syed F, Martino L, Focosi D, Scatena F, Olimpico F, Filipponi F, Masiello P, Boggi U, Marchetti P (2014) Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 57(2):362–365CrossRefPubMed
24.
go back to reference Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156CrossRefPubMed Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156CrossRefPubMed
25.
go back to reference Andrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415:1–10CrossRefPubMed Andrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415:1–10CrossRefPubMed
26.
go back to reference Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M (2011) Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 117:70–77CrossRefPubMed Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M (2011) Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 117:70–77CrossRefPubMed
27.
go back to reference Wojcik M, Mac-Marcjanek K, Wozniak LA (2009) Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 9:386–394CrossRefPubMed Wojcik M, Mac-Marcjanek K, Wozniak LA (2009) Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 9:386–394CrossRefPubMed
28.
go back to reference Taoka M, Ichimura T, Wakamiya-Tsuruta A, Kubota Y, Araki T, Obinata T, Isobe T (2003) V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J Biol Chem 278:5864–5870CrossRefPubMed Taoka M, Ichimura T, Wakamiya-Tsuruta A, Kubota Y, Araki T, Obinata T, Isobe T (2003) V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J Biol Chem 278:5864–5870CrossRefPubMed
29.
go back to reference Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099–1109CrossRefPubMedCentralPubMed Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099–1109CrossRefPubMedCentralPubMed
30.
go back to reference Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818CrossRefPubMedCentralPubMed Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818CrossRefPubMedCentralPubMed
31.
go back to reference Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293CrossRefPubMedCentralPubMed Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293CrossRefPubMedCentralPubMed
32.
go back to reference Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem. Biophys Res Commun 404:16–22CrossRefPubMed Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem. Biophys Res Commun 404:16–22CrossRefPubMed
33.
go back to reference Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, Chen Y, Choi I, Vourekas A, Won KJ, Liu C, Vivek K, Naji A, Friedman JR, Kaestner KH (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19(1):135–145CrossRefPubMedCentralPubMed Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, Chen Y, Choi I, Vourekas A, Won KJ, Liu C, Vivek K, Naji A, Friedman JR, Kaestner KH (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19(1):135–145CrossRefPubMedCentralPubMed
34.
go back to reference Tattikota SG, Rathjen T, McAnulty SJ, Wessels HH, Akerman I, van de Bunt M, Hausser J, Esguerra JL, Musahl A, Pandey AK, You X, Chen W, Herrera PL, Johnson PR, O’Carroll D, Eliasson L, Zavolan M, Gloyn AL, Ferrer J, Shalom-Feuerstein R, Aberdam D, Poy MN (2014) Argonaute 2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 19(1):122–134CrossRefPubMedCentralPubMed Tattikota SG, Rathjen T, McAnulty SJ, Wessels HH, Akerman I, van de Bunt M, Hausser J, Esguerra JL, Musahl A, Pandey AK, You X, Chen W, Herrera PL, Johnson PR, O’Carroll D, Eliasson L, Zavolan M, Gloyn AL, Ferrer J, Shalom-Feuerstein R, Aberdam D, Poy MN (2014) Argonaute 2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 19(1):122–134CrossRefPubMedCentralPubMed
35.
go back to reference Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50(6):867–872CrossRefPubMed Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50(6):867–872CrossRefPubMed
36.
go back to reference Qi L, Hu Y, Zhan Y, Wang J, Wang BB, Xia HF, Ma X (2012) A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neurosci Lett 515(1):1–6CrossRefPubMed Qi L, Hu Y, Zhan Y, Wang J, Wang BB, Xia HF, Ma X (2012) A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neurosci Lett 515(1):1–6CrossRefPubMed
Metadata
Title
MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion
Authors
Guido Sebastiani
Agnese Po
Evelina Miele
Giuliana Ventriglia
Elena Ceccarelli
Marco Bugliani
Lorella Marselli
Piero Marchetti
Alberto Gulino
Elisabetta Ferretti
Francesco Dotta
Publication date
01-06-2015
Publisher
Springer Milan
Published in
Acta Diabetologica / Issue 3/2015
Print ISSN: 0940-5429
Electronic ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-014-0675-y

Other articles of this Issue 3/2015

Acta Diabetologica 3/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.