Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8

Authors: MingHua Li, LinLi Tian, Hui Ren, XiaoXue Chen, Yu Wang, JingChun Ge, ShuLiang Wu, YaNan Sun, Ming Liu, Hui Xiao

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Various microRNAs (miRNAs) negatively modulate genes that are involved in cellular proliferation, differentiation, invasion, and apoptosis. In many types of cancer, the expression profiles of these miRNAs are altered. Recently, miR-101 was identified as a tumour suppressor and was found to be expressed at low levels in various types of tumours, including prostate, breast, endometrium, and bladder cancers. However, the function(s) of miR-101 in laryngeal carcinoma remain unknown.

Methods

The expression levels of miR-101 in laryngeal squamous cell carcinoma (LSCC) tissues and cells were detected by qPCR. Cell proliferation, migration, cell cycle, and apoptosis assay were applied to assess the function(s) of miR-101 in vitro. Nude mice subcutaneous tumour model was used to perform in vivo study. Moreover, we identified Cyclin-dependent kinase 8 (CDK8) as the target of miR-101 by a luciferase assay. The possible downstream effectors of CDK8 were investigated in Wnt/β-catenin signaling pathway. Changes of CDK8, β-catenin, and cyclin D1 protein levels were analyzed by western blotting and immunohistochemical staining. The prognostic effect of miR-101 was evaluated using the Kaplan–Meier method.

Results

Expression of miR-101 was down-regulated in the LSCC tissues compared with the adjacent normal tissues. Furthermore, downregulation of miR-101 correlated with T3–4 tumour grade, lymph node metastasis, and an advanced clinical stage in the LSCC patients examined (P < 0.05). The low level of miR-101 expression was associated with poor prognosis (P < 0.05). CDK8 was identified as the target gene of miR-101 by luciferase reporter assay. Moreover, we showed that up-regulation of miR-101 expression suppressed humen LSCC Hep-2 cells proliferation and migration, and induced cell-cycle arrest. Increased expression of miR-101 induced cells apoptosis both in vitro and in vivo. Correspondingly, exogenous expression of miR-101 significantly reduced the growth of tumour in a LSCC xenograft model. Furthermore, the miR-101 level was inversely correlated with levels of CDK8, β-catenin, and cyclin D1 in western blotting assay and immunohistochemical staining assay.

Conclusions

These results indicate that miR-101 is a potent tumour repressor that directly represses CDK8 expression. Thus, detection and targeting of miR-101 may represent a novel diagnostic and therapeutic strategy for LSCC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkin DM, Pisani P, Ferlay J (1993) Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 54:594–606CrossRefPubMed Parkin DM, Pisani P, Ferlay J (1993) Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 54:594–606CrossRefPubMed
2.
go back to reference Cooper JS, Porter K, Mallin K, Hoffman HT, Weber RS, Ang KK et al (2009) National Cancer Database report on cancer of the head and neck: 10-year update. Head Neck 31:748–758CrossRefPubMed Cooper JS, Porter K, Mallin K, Hoffman HT, Weber RS, Ang KK et al (2009) National Cancer Database report on cancer of the head and neck: 10-year update. Head Neck 31:748–758CrossRefPubMed
3.
go back to reference Almadori G, Bussu F, Cadoni G, Galli J, Paludetti G, Maurizi M (2005) Molecular markers in laryngeal squamous cell carcinoma: towards an integrated clinicobiological approach. Eur J Cancer 41:683–693CrossRefPubMed Almadori G, Bussu F, Cadoni G, Galli J, Paludetti G, Maurizi M (2005) Molecular markers in laryngeal squamous cell carcinoma: towards an integrated clinicobiological approach. Eur J Cancer 41:683–693CrossRefPubMed
4.
go back to reference Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300 Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300
5.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130CrossRefPubMed Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130CrossRefPubMed
6.
7.
go back to reference Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed
8.
go back to reference Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U et al (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097–1108CrossRefPubMed Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U et al (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097–1108CrossRefPubMed
9.
go back to reference Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates theproapoptotic gene hid in Drosophila. Cell 113:25–36CrossRefPubMed Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates theproapoptotic gene hid in Drosophila. Cell 113:25–36CrossRefPubMed
10.
go back to reference Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMed Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMed
11.
go back to reference Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96:40–44 Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96:40–44
12.
go back to reference Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196CrossRefPubMed Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196CrossRefPubMed
15.
go back to reference Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMed Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMed
17.
go back to reference Cao P, Zhou L, Zhang J, Zheng F, Wang H, Ma D et al (2013) Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma. Head Neck 35:720–728CrossRefPubMed Cao P, Zhou L, Zhang J, Zheng F, Wang H, Ma D et al (2013) Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma. Head Neck 35:720–728CrossRefPubMed
18.
go back to reference Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W et al (2010) Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16:1129–1139CrossRefPubMed Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W et al (2010) Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16:1129–1139CrossRefPubMed
19.
go back to reference Li M, Tian L, Wang L, Yao H, Zhang J, Lu J et al (2013) Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One 8:e77829PubMedCentralCrossRefPubMed Li M, Tian L, Wang L, Yao H, Zhang J, Lu J et al (2013) Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One 8:e77829PubMedCentralCrossRefPubMed
20.
go back to reference Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S et al (2014) MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol 31:785CrossRefPubMed Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S et al (2014) MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol 31:785CrossRefPubMed
21.
go back to reference Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L (2011) Differential microRNA expression and identification of putative miRNA targets and pathways in head and neckcancers. Int J Mol Med 28:327–336PubMed Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L (2011) Differential microRNA expression and identification of putative miRNA targets and pathways in head and neckcancers. Int J Mol Med 28:327–336PubMed
22.
go back to reference Gui T, Shen K (2012) miRNA-101: a potential target for tumor therapy. Cancer Epidemiol 36:537–540CrossRefPubMed Gui T, Shen K (2012) miRNA-101: a potential target for tumor therapy. Cancer Epidemiol 36:537–540CrossRefPubMed
23.
go back to reference Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G et al (2009) MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315:1439–1447CrossRefPubMed Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G et al (2009) MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315:1439–1447CrossRefPubMed
24.
go back to reference Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila) 4:1073–1083CrossRef Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila) 4:1073–1083CrossRef
25.
go back to reference Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699PubMedCentralCrossRefPubMed Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699PubMedCentralCrossRefPubMed
26.
go back to reference Thu KL, Chari R, Lockwood WW, Lam S, Lam WL (2011) miR-101 DNA copy loss is a prominent subtype specific event in lung cancer. J Thorac Oncol 6:1594–1598CrossRefPubMed Thu KL, Chari R, Lockwood WW, Lam S, Lam WL (2011) miR-101 DNA copy loss is a prominent subtype specific event in lung cancer. J Thorac Oncol 6:1594–1598CrossRefPubMed
27.
go back to reference Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ (2011) MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6:671–678CrossRefPubMed Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ (2011) MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6:671–678CrossRefPubMed
28.
go back to reference Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ et al (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46:2295–2303CrossRefPubMed Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ et al (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46:2295–2303CrossRefPubMed
29.
go back to reference Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M et al (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5:6049–6062PubMedCentralPubMed Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M et al (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5:6049–6062PubMedCentralPubMed
30.
31.
go back to reference Zhang H, Qi F, Cao Y, Chen M, Zu X (2014) Down-regulated microRNA-101 in bladder transitional cell carcinoma is associated with poor prognosis. Med Sci Monit 20:812–817PubMedCentralCrossRefPubMed Zhang H, Qi F, Cao Y, Chen M, Zu X (2014) Down-regulated microRNA-101 in bladder transitional cell carcinoma is associated with poor prognosis. Med Sci Monit 20:812–817PubMedCentralCrossRefPubMed
32.
go back to reference Hu Z, Lin Y, Chen H, Mao Y, Wu J, Zhu Y et al (2013) MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun 435:82–87CrossRefPubMed Hu Z, Lin Y, Chen H, Mao Y, Wu J, Zhu Y et al (2013) MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun 435:82–87CrossRefPubMed
33.
go back to reference Luo C, Merz PR, Chen Y, Dickes E, Pscherer A, Schadendorf D et al (2013) MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2. Cancer Lett 341:240–247CrossRefPubMed Luo C, Merz PR, Chen Y, Dickes E, Pscherer A, Schadendorf D et al (2013) MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2. Cancer Lett 341:240–247CrossRefPubMed
34.
go back to reference Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X et al (2011) The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 30:4339–4349PubMedCentralCrossRefPubMed Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X et al (2011) The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 30:4339–4349PubMedCentralCrossRefPubMed
35.
go back to reference Kim S, Xu X, Hecht A, Boyer TG (2006) Mediator is a transducer of Wnt/betacatenin signaling. J Biol Chem 281:14066–14075CrossRefPubMed Kim S, Xu X, Hecht A, Boyer TG (2006) Mediator is a transducer of Wnt/betacatenin signaling. J Biol Chem 281:14066–14075CrossRefPubMed
36.
go back to reference Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30:250–255CrossRefPubMed Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30:250–255CrossRefPubMed
37.
go back to reference Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ (2009) The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23:439–451PubMedCentralCrossRefPubMed Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ (2009) The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23:439–451PubMedCentralCrossRefPubMed
38.
go back to reference Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ (2009) The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29:650–661PubMedCentralCrossRefPubMed Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ (2009) The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29:650–661PubMedCentralCrossRefPubMed
39.
go back to reference Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ (2008) Cooperative activity of CDK8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 27:1447–1457PubMedCentralPubMed Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ (2008) Cooperative activity of CDK8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 27:1447–1457PubMedCentralPubMed
40.
go back to reference Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551PubMedCentralCrossRefPubMed Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551PubMedCentralCrossRefPubMed
41.
go back to reference Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS et al (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455:552–556PubMedCentralCrossRefPubMed Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS et al (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455:552–556PubMedCentralCrossRefPubMed
42.
go back to reference He SB, Yuan Y, Wang L, Yu MJ, Zhu YB, Zhu XG (2011) Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells. J Exp Clin Cancer Res 30:109PubMedCentralCrossRefPubMed He SB, Yuan Y, Wang L, Yu MJ, Zhu YB, Zhu XG (2011) Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells. J Exp Clin Cancer Res 30:109PubMedCentralCrossRefPubMed
43.
go back to reference Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152PubMedCentralCrossRefPubMed Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152PubMedCentralCrossRefPubMed
44.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed
45.
go back to reference Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59CrossRefPubMed Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59CrossRefPubMed
46.
go back to reference Tian L, Li M, Ge J, Guo Y, Sun Y, Liu M et al (2014) MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol 35:5953–5963CrossRefPubMed Tian L, Li M, Ge J, Guo Y, Sun Y, Liu M et al (2014) MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol 35:5953–5963CrossRefPubMed
47.
48.
49.
go back to reference Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17:194–201PubMedCentralCrossRefPubMed Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17:194–201PubMedCentralCrossRefPubMed
50.
go back to reference Belakavadi M, Fondell JD (2010) CDK8 positively cooperates with mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 30:2437–2448PubMedCentralCrossRefPubMed Belakavadi M, Fondell JD (2010) CDK8 positively cooperates with mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 30:2437–2448PubMedCentralCrossRefPubMed
51.
go back to reference Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C (2014) Involvement of Mediator complex in malignancy. Biochim Biophys Acta 1845:66–83PubMed Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C (2014) Involvement of Mediator complex in malignancy. Biochim Biophys Acta 1845:66–83PubMed
52.
go back to reference Grünberg S, Hahn S (2013) Structural insights into transcription initiation by RNA polymerase II. Trends Biochem Sci 38:603–611CrossRefPubMed Grünberg S, Hahn S (2013) Structural insights into transcription initiation by RNA polymerase II. Trends Biochem Sci 38:603–611CrossRefPubMed
53.
go back to reference Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a MED of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110(2):143–151CrossRefPubMed Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a MED of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110(2):143–151CrossRefPubMed
54.
go back to reference Napoli C, Sessa M, Infante T, Casamassimi A (2012) Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 94:579–587CrossRefPubMed Napoli C, Sessa M, Infante T, Casamassimi A (2012) Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 94:579–587CrossRefPubMed
56.
go back to reference Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC et al (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 103:18928–18933PubMedCentralCrossRefPubMed Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC et al (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 103:18928–18933PubMedCentralCrossRefPubMed
57.
go back to reference Zhao J, Ramos R, Demma M (2013) CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32:3520–3530CrossRefPubMed Zhao J, Ramos R, Demma M (2013) CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32:3520–3530CrossRefPubMed
58.
go back to reference Firestein R, Shima K, Nosho K, Irahara N, Baba Y, Bojarski E et al (2010) CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival. Int J Cancer 126:2863–2873PubMedCentralPubMed Firestein R, Shima K, Nosho K, Irahara N, Baba Y, Bojarski E et al (2010) CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival. Int J Cancer 126:2863–2873PubMedCentralPubMed
59.
go back to reference Kaur M, Velmurugan B, Tyagi A, Agarwal C, Singh RP, Agarwal R (2010) Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia 12:415–424PubMedCentralCrossRefPubMed Kaur M, Velmurugan B, Tyagi A, Agarwal C, Singh RP, Agarwal R (2010) Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia 12:415–424PubMedCentralCrossRefPubMed
60.
go back to reference Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3:111–121CrossRef Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3:111–121CrossRef
61.
go back to reference Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109PubMedCentralCrossRefPubMed Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109PubMedCentralCrossRefPubMed
62.
go back to reference Kishi T, Ikeda A, Koyama N, Fukada J, Nagao R (2008) A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci USA 105:14497–14502PubMedCentralCrossRefPubMed Kishi T, Ikeda A, Koyama N, Fukada J, Nagao R (2008) A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci USA 105:14497–14502PubMedCentralCrossRefPubMed
63.
go back to reference Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA et al (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15:1078–1092PubMedCentralCrossRefPubMed Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA et al (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15:1078–1092PubMedCentralCrossRefPubMed
66.
go back to reference Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by CDK8-containing mediator complexes. Nature 407:102–106CrossRefPubMed Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by CDK8-containing mediator complexes. Nature 407:102–106CrossRefPubMed
67.
go back to reference Liu Y, Kung C, Fishburn J, Ansari AZ, Shokat KM, Hahn S (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol 24:1721–1735PubMedCentralCrossRefPubMed Liu Y, Kung C, Fishburn J, Ansari AZ, Shokat KM, Hahn S (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol 24:1721–1735PubMedCentralCrossRefPubMed
68.
go back to reference Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520CrossRefPubMed Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520CrossRefPubMed
69.
go back to reference Nelson C, Goto S, Lund K, Hung W, Sadowski I (2003) Srb10/CDK8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421:187–190CrossRefPubMed Nelson C, Goto S, Lund K, Hung W, Sadowski I (2003) Srb10/CDK8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421:187–190CrossRefPubMed
70.
go back to reference Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26:898–915CrossRefPubMed Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26:898–915CrossRefPubMed
71.
go back to reference Katoh M, Katoh M (2007) Wnt signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045CrossRefPubMed Katoh M, Katoh M (2007) Wnt signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045CrossRefPubMed
72.
go back to reference Kielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S et al (2002) Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signalling. Nat Genet 32:594–605CrossRefPubMed Kielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S et al (2002) Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signalling. Nat Genet 32:594–605CrossRefPubMed
73.
go back to reference Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11:558–572CrossRefPubMed Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11:558–572CrossRefPubMed
Metadata
Title
MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8
Authors
MingHua Li
LinLi Tian
Hui Ren
XiaoXue Chen
Yu Wang
JingChun Ge
ShuLiang Wu
YaNan Sun
Ming Liu
Hui Xiao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0626-6

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.