Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Review

Microprocessor of microRNAs: regulation and potential for therapeutic intervention

Authors: Kevin J Beezhold, Vince Castranova, Fei Chen

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

MicroRNAs (miRNAs) are a class of small, noncoding RNAs critically involved in a wide spectrum of normal and pathological processes of cells or tissues by fine-tuning the signals important for stem cell development, cell differentiation, cell cycle regulation, apoptosis, and transformation. Considerable progress has been made in the past few years in understanding the transcription, biogenesis and functional regulation of miRNAs. Numerous studies have implicated altered expression of miRNAs in human cancers, suggesting that aberrant expression of miRNAs is one of the hallmarks for carcinogenesis. In this review, we briefly discuss most recent discoveries on the regulation of miRNAs at the level of microprocessor-mediated biogenesis of miRNAs.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lee Y, Jeon K, Lee JT, Kim S, Kim VN: MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002, 21: 4663-4670. 10.1093/emboj/cdf476PubMedCentralCrossRefPubMed Lee Y, Jeon K, Lee JT, Kim S, Kim VN: MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002, 21: 4663-4670. 10.1093/emboj/cdf476PubMedCentralCrossRefPubMed
3.
go back to reference Hutvagner G, McLachlan J, Pasquinelli AE: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001, 293: 834-838. 10.1126/science.1062961CrossRefPubMed Hutvagner G, McLachlan J, Pasquinelli AE: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001, 293: 834-838. 10.1126/science.1062961CrossRefPubMed
4.
go back to reference Lee Y, Ahn C, Han J: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957CrossRefPubMed Lee Y, Ahn C, Han J: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957CrossRefPubMed
5.
go back to reference Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17: 3011-3016. 10.1101/gad.1158803PubMedCentralCrossRefPubMed Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17: 3011-3016. 10.1101/gad.1158803PubMedCentralCrossRefPubMed
6.
go back to reference Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004, 10: 185-191. 10.1261/rna.5167604PubMedCentralCrossRefPubMed Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004, 10: 185-191. 10.1261/rna.5167604PubMedCentralCrossRefPubMed
7.
go back to reference Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science. 2004, 303: 95-98. 10.1126/science.1090599CrossRefPubMed Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science. 2004, 303: 95-98. 10.1126/science.1090599CrossRefPubMed
8.
go back to reference Zeng Y, Cullen BR: Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 2004, 32: 4776-4785. 10.1093/nar/gkh824PubMedCentralCrossRefPubMed Zeng Y, Cullen BR: Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 2004, 32: 4776-4785. 10.1093/nar/gkh824PubMedCentralCrossRefPubMed
9.
go back to reference Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001, 409: 363-366. 10.1038/35053110CrossRefPubMed Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001, 409: 363-366. 10.1038/35053110CrossRefPubMed
10.
go back to reference Ketting RF, Fischer SE, Bernstein E: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. Genes Dev. 2001, 15: 2654-2659. 10.1101/gad.927801PubMedCentralCrossRefPubMed Ketting RF, Fischer SE, Bernstein E: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. Genes Dev. 2001, 15: 2654-2659. 10.1101/gad.927801PubMedCentralCrossRefPubMed
11.
go back to reference Knight SW, Bass BL: A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001, 293: 2269-2271. 10.1126/science.1062039PubMedCentralCrossRefPubMed Knight SW, Bass BL: A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001, 293: 2269-2271. 10.1126/science.1062039PubMedCentralCrossRefPubMed
12.
go back to reference Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002, 21: 5875-5885. 10.1093/emboj/cdf582PubMedCentralCrossRefPubMed Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002, 21: 5875-5885. 10.1093/emboj/cdf582PubMedCentralCrossRefPubMed
13.
go back to reference MacRae IJ, Zhou K, Doudna JA: Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol. 2007, 14: 934-940. 10.1038/nsmb1293CrossRefPubMed MacRae IJ, Zhou K, Doudna JA: Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol. 2007, 14: 934-940. 10.1038/nsmb1293CrossRefPubMed
14.
go back to reference Khvorova A, Reynolds A, Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003, 115: 209-216. 10.1016/S0092-8674(03)00801-8CrossRefPubMed Khvorova A, Reynolds A, Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003, 115: 209-216. 10.1016/S0092-8674(03)00801-8CrossRefPubMed
15.
go back to reference Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005, 123: 631-640. 10.1016/j.cell.2005.10.022CrossRefPubMed Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005, 123: 631-640. 10.1016/j.cell.2005.10.022CrossRefPubMed
16.
go back to reference Pusch O, Boden D, Silbermann R: Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA. Nucleic Acids Res. 2003, 31: 6444-6449. 10.1093/nar/gkg876PubMedCentralCrossRefPubMed Pusch O, Boden D, Silbermann R: Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA. Nucleic Acids Res. 2003, 31: 6444-6449. 10.1093/nar/gkg876PubMedCentralCrossRefPubMed
17.
18.
go back to reference Lal A, Navarro F, Maher CA: miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell. 2009, 35: 610-625. 10.1016/j.molcel.2009.08.020PubMedCentralCrossRefPubMed Lal A, Navarro F, Maher CA: miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell. 2009, 35: 610-625. 10.1016/j.molcel.2009.08.020PubMedCentralCrossRefPubMed
19.
go back to reference Cannell IG, Kong YW, Bushell M: How do microRNAs regulate gene expression?. Biochem Soc Trans. 2008, 36: 1224-1231. 10.1042/BST0361224CrossRefPubMed Cannell IG, Kong YW, Bushell M: How do microRNAs regulate gene expression?. Biochem Soc Trans. 2008, 36: 1224-1231. 10.1042/BST0361224CrossRefPubMed
20.
go back to reference Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000, 101: 25-33. 10.1016/S0092-8674(00)80620-0CrossRefPubMed Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000, 101: 25-33. 10.1016/S0092-8674(00)80620-0CrossRefPubMed
21.
go back to reference Moss EG, Lee RC, Ambros V: The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997, 88: 637-646. 10.1016/S0092-8674(00)81906-6CrossRefPubMed Moss EG, Lee RC, Ambros V: The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997, 88: 637-646. 10.1016/S0092-8674(00)81906-6CrossRefPubMed
22.
go back to reference Vella MC, Reinert K, Slack FJ: Architecture of a validated microRNA::target interaction. Chem Biol. 2004, 11: 1619-1623. 10.1016/j.chembiol.2004.09.010CrossRefPubMed Vella MC, Reinert K, Slack FJ: Architecture of a validated microRNA::target interaction. Chem Biol. 2004, 11: 1619-1623. 10.1016/j.chembiol.2004.09.010CrossRefPubMed
23.
go back to reference Wu L, Belasco JG: Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008, 29: 1-7. 10.1016/j.molcel.2007.12.010CrossRefPubMed Wu L, Belasco JG: Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008, 29: 1-7. 10.1016/j.molcel.2007.12.010CrossRefPubMed
24.
go back to reference Pillai RS, Bhattacharyya SN, Artus CG: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005, 309: 1573-1576. 10.1126/science.1115079CrossRefPubMed Pillai RS, Bhattacharyya SN, Artus CG: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005, 309: 1573-1576. 10.1126/science.1115079CrossRefPubMed
25.
go back to reference Kiriakidou M, Tan GS, Lamprinaki S: An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007, 129: 1141-1151. 10.1016/j.cell.2007.05.016CrossRefPubMed Kiriakidou M, Tan GS, Lamprinaki S: An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007, 129: 1141-1151. 10.1016/j.cell.2007.05.016CrossRefPubMed
26.
go back to reference Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005, 7: 719-723. 10.1038/ncb1274PubMedCentralCrossRefPubMed Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005, 7: 719-723. 10.1038/ncb1274PubMedCentralCrossRefPubMed
27.
28.
go back to reference Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E: A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. Rna. 2005, 11: 1640-1647. 10.1261/rna.2191905PubMedCentralCrossRefPubMed Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E: A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. Rna. 2005, 11: 1640-1647. 10.1261/rna.2191905PubMedCentralCrossRefPubMed
29.
go back to reference Jackson RJ, Standart N: How do microRNAs regulate gene expression?. Sci STKE. 2007, 2007: re1- 10.1126/stke.3672007re1CrossRefPubMed Jackson RJ, Standart N: How do microRNAs regulate gene expression?. Sci STKE. 2007, 2007: re1- 10.1126/stke.3672007re1CrossRefPubMed
30.
go back to reference Seitz H, Zamore PD: Rethinking the microprocessor. Cell. 2006, 125: 827-829. 10.1016/j.cell.2006.05.018CrossRefPubMed Seitz H, Zamore PD: Rethinking the microprocessor. Cell. 2006, 125: 827-829. 10.1016/j.cell.2006.05.018CrossRefPubMed
31.
go back to reference Morlando M, Ballarino M, Gromak N: Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 2008, 15: 902-909. 10.1038/nsmb.1475CrossRefPubMed Morlando M, Ballarino M, Gromak N: Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 2008, 15: 902-909. 10.1038/nsmb.1475CrossRefPubMed
32.
go back to reference Gregory RI, Yan KP, Amuthan G: The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004, 432: 235-240. 10.1038/nature03120CrossRefPubMed Gregory RI, Yan KP, Amuthan G: The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004, 432: 235-240. 10.1038/nature03120CrossRefPubMed
34.
go back to reference Zeng Y, Yi R, Cullen BR: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005, 24: 138-148. 10.1038/sj.emboj.7600491PubMedCentralCrossRefPubMed Zeng Y, Yi R, Cullen BR: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005, 24: 138-148. 10.1038/sj.emboj.7600491PubMedCentralCrossRefPubMed
35.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004, 303: 83-86. 10.1126/science.1091903CrossRefPubMed Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004, 303: 83-86. 10.1126/science.1091903CrossRefPubMed
36.
go back to reference Han J, Lee Y, Yeom KH: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006, 125: 887-901. 10.1016/j.cell.2006.03.043CrossRefPubMed Han J, Lee Y, Yeom KH: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006, 125: 887-901. 10.1016/j.cell.2006.03.043CrossRefPubMed
37.
go back to reference Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N: Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res. 2007, 313: 4196-4207. 10.1016/j.yexcr.2007.07.020CrossRefPubMed Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N: Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res. 2007, 313: 4196-4207. 10.1016/j.yexcr.2007.07.020CrossRefPubMed
38.
go back to reference Fuller-Pace FV: DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 2006, 34: 4206-4215. 10.1093/nar/gkl460PubMedCentralCrossRefPubMed Fuller-Pace FV: DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 2006, 34: 4206-4215. 10.1093/nar/gkl460PubMedCentralCrossRefPubMed
39.
go back to reference Fukuda T, Yamagata K, Fujiyama S: DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol. 2007, 9: 604-611. 10.1038/ncb1577CrossRefPubMed Fukuda T, Yamagata K, Fujiyama S: DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol. 2007, 9: 604-611. 10.1038/ncb1577CrossRefPubMed
40.
41.
go back to reference Warner DR, Bhattacherjee V, Yin X: Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun. 2004, 324: 70-76. 10.1016/j.bbrc.2004.09.017CrossRefPubMed Warner DR, Bhattacherjee V, Yin X: Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun. 2004, 324: 70-76. 10.1016/j.bbrc.2004.09.017CrossRefPubMed
43.
go back to reference Selcuklu SD, Donoghue MT, Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009, 37: 918-925. 10.1042/BST0370918CrossRefPubMed Selcuklu SD, Donoghue MT, Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009, 37: 918-925. 10.1042/BST0370918CrossRefPubMed
44.
go back to reference Yamanaka Y, Tagawa H, Takahashi N: Aberrant overexpression of microRNAs activate AKT signaling via downregulation of tumor suppressors in NK-cell lymphoma/leukemia. Blood. 2009, 114 (15): 3265-75. 10.1182/blood-2009-06-222794CrossRefPubMed Yamanaka Y, Tagawa H, Takahashi N: Aberrant overexpression of microRNAs activate AKT signaling via downregulation of tumor suppressors in NK-cell lymphoma/leukemia. Blood. 2009, 114 (15): 3265-75. 10.1182/blood-2009-06-222794CrossRefPubMed
45.
go back to reference Asangani IA, Rasheed SA, Nikolova DA: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27: 2128-2136. 10.1038/sj.onc.1210856CrossRefPubMed Asangani IA, Rasheed SA, Nikolova DA: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27: 2128-2136. 10.1038/sj.onc.1210856CrossRefPubMed
46.
go back to reference Garzon R, Volinia S, Liu CG: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008, 111: 3183-3189. 10.1182/blood-2007-07-098749PubMedCentralCrossRefPubMed Garzon R, Volinia S, Liu CG: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008, 111: 3183-3189. 10.1182/blood-2007-07-098749PubMedCentralCrossRefPubMed
47.
go back to reference Chen R, Alvero AB, Silasi DA: Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene. 2008, 27: 4712-4723. 10.1038/onc.2008.112PubMedCentralCrossRefPubMed Chen R, Alvero AB, Silasi DA: Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene. 2008, 27: 4712-4723. 10.1038/onc.2008.112PubMedCentralCrossRefPubMed
48.
go back to reference Kong W, Yang H, He L: MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008, 28: 6773-6784. 10.1128/MCB.00941-08PubMedCentralCrossRefPubMed Kong W, Yang H, He L: MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008, 28: 6773-6784. 10.1128/MCB.00941-08PubMedCentralCrossRefPubMed
49.
go back to reference Yang H, Kong W, He L: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008, 68: 425-433. 10.1158/0008-5472.CAN-07-2488CrossRefPubMed Yang H, Kong W, He L: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008, 68: 425-433. 10.1158/0008-5472.CAN-07-2488CrossRefPubMed
50.
go back to reference Suzuki HI, Yamagata K, Sugimoto K: Modulation of microRNA processing by p53. Nature. 2009, 460: 529-533. 10.1038/nature08199CrossRefPubMed Suzuki HI, Yamagata K, Sugimoto K: Modulation of microRNA processing by p53. Nature. 2009, 460: 529-533. 10.1038/nature08199CrossRefPubMed
51.
go back to reference Bates GJ, Nicol SM, Wilson BJ: The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 2005, 24: 543-553. 10.1038/sj.emboj.7600550PubMedCentralCrossRefPubMed Bates GJ, Nicol SM, Wilson BJ: The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 2005, 24: 543-553. 10.1038/sj.emboj.7600550PubMedCentralCrossRefPubMed
52.
go back to reference Raver-Shapira N, Marciano E, Meiri E: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017CrossRefPubMed Raver-Shapira N, Marciano E, Meiri E: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017CrossRefPubMed
53.
go back to reference Zenz T, Mohr J, Eldering E: miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009, 113: 3801-3808. 10.1182/blood-2008-08-172254CrossRefPubMed Zenz T, Mohr J, Eldering E: miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009, 113: 3801-3808. 10.1182/blood-2008-08-172254CrossRefPubMed
54.
go back to reference Fujita Y, Kojima K, Hamada N: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 2008, 377: 114-119. 10.1016/j.bbrc.2008.09.086CrossRefPubMed Fujita Y, Kojima K, Hamada N: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 2008, 377: 114-119. 10.1016/j.bbrc.2008.09.086CrossRefPubMed
55.
go back to reference Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104: 15472-15477. 10.1073/pnas.0707351104PubMedCentralCrossRefPubMed Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104: 15472-15477. 10.1073/pnas.0707351104PubMedCentralCrossRefPubMed
56.
go back to reference Li Y, Guessous F, Zhang Y: MicroRNA-34a Inhibits Glioblastoma Growth by Targeting Multiple Oncogenes. Cancer Res. 2009, 69 (19): 7569-76. 10.1158/0008-5472.CAN-09-0529PubMedCentralCrossRefPubMed Li Y, Guessous F, Zhang Y: MicroRNA-34a Inhibits Glioblastoma Growth by Targeting Multiple Oncogenes. Cancer Res. 2009, 69 (19): 7569-76. 10.1158/0008-5472.CAN-09-0529PubMedCentralCrossRefPubMed
57.
go back to reference Lerner M, Harada M, Loven J: DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 2009, 315 (17): 2941-52. 10.1016/j.yexcr.2009.07.001CrossRefPubMed Lerner M, Harada M, Loven J: DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 2009, 315 (17): 2941-52. 10.1016/j.yexcr.2009.07.001CrossRefPubMed
58.
go back to reference Cimmino A, Calin GA, Fabbri M: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005, 102: 13944-13949. 10.1073/pnas.0506654102PubMedCentralCrossRefPubMed Cimmino A, Calin GA, Fabbri M: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005, 102: 13944-13949. 10.1073/pnas.0506654102PubMedCentralCrossRefPubMed
59.
go back to reference Bonci D, Coppola V, Musumeci M: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008, 14: 1271-1277. 10.1038/nm.1880CrossRefPubMed Bonci D, Coppola V, Musumeci M: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008, 14: 1271-1277. 10.1038/nm.1880CrossRefPubMed
60.
go back to reference Slaby O, Svoboda M, Fabian P: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007, 72: 397-402. 10.1159/000113489CrossRefPubMed Slaby O, Svoboda M, Fabian P: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007, 72: 397-402. 10.1159/000113489CrossRefPubMed
61.
go back to reference Motoyama K, Inoue H, Takatsuno Y: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009, 34: 1069-1075.PubMed Motoyama K, Inoue H, Takatsuno Y: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009, 34: 1069-1075.PubMed
62.
63.
go back to reference Chen X, Guo X, Zhang H: Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009, 28: 1385-1392. 10.1038/onc.2008.474CrossRefPubMed Chen X, Guo X, Zhang H: Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009, 28: 1385-1392. 10.1038/onc.2008.474CrossRefPubMed
64.
go back to reference Wang S, Bian C, Yang Z: miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol. 2009, 34: 1461-1466.PubMed Wang S, Bian C, Yang Z: miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol. 2009, 34: 1461-1466.PubMed
65.
go back to reference Wilson MD, Wang D, Wagner R: ARS2 is a conserved eukaryotic gene essential for early mammalian development. Mol Cell Biol. 2008, 28: 1503-1514. 10.1128/MCB.01565-07PubMedCentralCrossRefPubMed Wilson MD, Wang D, Wagner R: ARS2 is a conserved eukaryotic gene essential for early mammalian development. Mol Cell Biol. 2008, 28: 1503-1514. 10.1128/MCB.01565-07PubMedCentralCrossRefPubMed
66.
go back to reference Gruber JJ, Zatechka DS, Sabin LR: Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell. 2009, 138: 328-339. 10.1016/j.cell.2009.04.046PubMedCentralCrossRefPubMed Gruber JJ, Zatechka DS, Sabin LR: Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell. 2009, 138: 328-339. 10.1016/j.cell.2009.04.046PubMedCentralCrossRefPubMed
67.
go back to reference Dong Z, Han MH, Fedoroff N: The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA. 2008, 105: 9970-9975. 10.1073/pnas.0803356105PubMedCentralCrossRefPubMed Dong Z, Han MH, Fedoroff N: The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA. 2008, 105: 9970-9975. 10.1073/pnas.0803356105PubMedCentralCrossRefPubMed
68.
go back to reference Sabin LR, Zhou R, Gruber JJ: Ars2 regulates both miRNA- and siRNA-dependent silencing and suppresses RNA virus infection in Drosophila. Cell. 2009, 138: 340-351. 10.1016/j.cell.2009.04.045PubMedCentralCrossRefPubMed Sabin LR, Zhou R, Gruber JJ: Ars2 regulates both miRNA- and siRNA-dependent silencing and suppresses RNA virus infection in Drosophila. Cell. 2009, 138: 340-351. 10.1016/j.cell.2009.04.045PubMedCentralCrossRefPubMed
69.
go back to reference Hwang HW, Wentzel EA, Mendell JT: Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci USA. 2009, 106: 7016-7021. 10.1073/pnas.0811523106PubMedCentralCrossRefPubMed Hwang HW, Wentzel EA, Mendell JT: Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci USA. 2009, 106: 7016-7021. 10.1073/pnas.0811523106PubMedCentralCrossRefPubMed
70.
go back to reference Meerson A, Milyavsky M, Rotter V: p53 mediates density-dependent growth arrest. FEBS Lett. 2004, 559: 152-158. 10.1016/S0014-5793(04)00027-4CrossRefPubMed Meerson A, Milyavsky M, Rotter V: p53 mediates density-dependent growth arrest. FEBS Lett. 2004, 559: 152-158. 10.1016/S0014-5793(04)00027-4CrossRefPubMed
71.
go back to reference Yamagata KF, Ito S, Ueda S, Murata T, Naitou T, Takeyama M, Minami K, O'Malley Y, BW Kato S: Maturation of MicroRNA Is Hormonally Regulated by a Nuclear Receptor. Mol Cell. 2009, 36: 340-347. 10.1016/j.molcel.2009.08.017CrossRefPubMed Yamagata KF, Ito S, Ueda S, Murata T, Naitou T, Takeyama M, Minami K, O'Malley Y, BW Kato S: Maturation of MicroRNA Is Hormonally Regulated by a Nuclear Receptor. Mol Cell. 2009, 36: 340-347. 10.1016/j.molcel.2009.08.017CrossRefPubMed
72.
go back to reference Wong CF, Tellam RL: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008, 283: 9836-9843. 10.1074/jbc.M709614200CrossRefPubMed Wong CF, Tellam RL: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008, 283: 9836-9843. 10.1074/jbc.M709614200CrossRefPubMed
Metadata
Title
Microprocessor of microRNAs: regulation and potential for therapeutic intervention
Authors
Kevin J Beezhold
Vince Castranova
Fei Chen
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-134

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine