Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells

Authors: Mengqian Chen, Michael A. Feuerstein, Elina Levina, Prateek S. Baghel, Richard D. Carkner, Matthew J. Tanner, Michael Shtutman, Francis Vacherot, Stéphane Terry, Alexandre de la Taille, Ralph Buttyan

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh) signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI) prostate cancer cells.

Results

Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase) from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo) expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR) mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881) restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to grow in androgen depleted medium. AR protein co-immunoprecipitates with Gli2 protein from transfected 293T cell lysates.

Conclusions

Collectively, our results indicate that Hh/Gli signaling supports androgen signaling and AI growth in prostate cancer cells in a low androgen environment. The finding that Gli2 co-immunoprecipitates with AR protein suggests that an interaction between these proteins might be the basis for Hedgehog/Gli support of androgen signaling under this condition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rini BI, Small EJ: Hormone-refractory Prostate Cancer. Curr Treat Options Oncol. 2002, 3: 437-446. 10.1007/s11864-002-0008-1CrossRefPubMed Rini BI, Small EJ: Hormone-refractory Prostate Cancer. Curr Treat Options Oncol. 2002, 3: 437-446. 10.1007/s11864-002-0008-1CrossRefPubMed
2.
go back to reference McConnell JD: Physiologic basis of endocrine therapy for prostatic cancer. Urol Clin North Am. 1991, 18: 1-13.PubMed McConnell JD: Physiologic basis of endocrine therapy for prostatic cancer. Urol Clin North Am. 1991, 18: 1-13.PubMed
3.
go back to reference Kessler B, Albertsen P: The natural history of prostate cancer. Urol Clin North Am. 2003, 30: 219-226. 10.1016/S0094-0143(02)00182-9CrossRefPubMed Kessler B, Albertsen P: The natural history of prostate cancer. Urol Clin North Am. 2003, 30: 219-226. 10.1016/S0094-0143(02)00182-9CrossRefPubMed
4.
go back to reference Miyamoto H, Messing EM, Chang C: Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate. 2004, 61: 332-353. 10.1002/pros.20115CrossRefPubMed Miyamoto H, Messing EM, Chang C: Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate. 2004, 61: 332-353. 10.1002/pros.20115CrossRefPubMed
5.
go back to reference Attar RM, Takimoto CH, Gottardis MM: Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009, 15: 3251-3255. 10.1158/1078-0432.CCR-08-1171CrossRefPubMed Attar RM, Takimoto CH, Gottardis MM: Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009, 15: 3251-3255. 10.1158/1078-0432.CCR-08-1171CrossRefPubMed
6.
go back to reference Grossmann ME, Huang H, Tindall DJ: Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 2001, 93: 1687-1697. 10.1093/jnci/93.22.1687CrossRefPubMed Grossmann ME, Huang H, Tindall DJ: Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst. 2001, 93: 1687-1697. 10.1093/jnci/93.22.1687CrossRefPubMed
7.
go back to reference Agoulnik IU, Weigel NL: Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem. 2006, 99: 362-372. 10.1002/jcb.20811CrossRefPubMed Agoulnik IU, Weigel NL: Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem. 2006, 99: 362-372. 10.1002/jcb.20811CrossRefPubMed
8.
go back to reference Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, Gambhir SS, Wu L, Carey M: Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res. 2003, 63: 4552-4560.PubMed Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, Gambhir SS, Wu L, Carey M: Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res. 2003, 63: 4552-4560.PubMed
9.
go back to reference Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ: A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009, 69: 2305-2313. 10.1158/0008-5472.CAN-08-3795PubMedCentralCrossRefPubMed Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ: A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009, 69: 2305-2313. 10.1158/0008-5472.CAN-08-3795PubMedCentralCrossRefPubMed
10.
go back to reference Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008, 68: 5469-5477. 10.1158/0008-5472.CAN-08-0594PubMedCentralCrossRefPubMed Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008, 68: 5469-5477. 10.1158/0008-5472.CAN-08-0594PubMedCentralCrossRefPubMed
11.
go back to reference Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC: Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008, 68: 6407-6415. 10.1158/0008-5472.CAN-07-5997CrossRefPubMed Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC: Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008, 68: 6407-6415. 10.1158/0008-5472.CAN-07-5997CrossRefPubMed
12.
go back to reference Dillard PR, Lin MF, Khan SA: Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol. 2008, 295: 115-120. 10.1016/j.mce.2008.08.013PubMedCentralCrossRefPubMed Dillard PR, Lin MF, Khan SA: Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol. 2008, 295: 115-120. 10.1016/j.mce.2008.08.013PubMedCentralCrossRefPubMed
13.
go back to reference Zhu ML, Kyprianou N: Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer. 2008, 15: 841-849. 10.1677/ERC-08-0084PubMedCentralCrossRefPubMed Zhu ML, Kyprianou N: Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer. 2008, 15: 841-849. 10.1677/ERC-08-0084PubMedCentralCrossRefPubMed
14.
go back to reference Attard G, Reid AH, A'Hern R, Parker C, Oommen NB, Folkerd E, Messiou C, Molife LR, Maier G, Thompson E: Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol. 2009, 27: 3742-3748. 10.1200/JCO.2008.20.0642PubMedCentralCrossRefPubMed Attard G, Reid AH, A'Hern R, Parker C, Oommen NB, Folkerd E, Messiou C, Molife LR, Maier G, Thompson E: Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol. 2009, 27: 3742-3748. 10.1200/JCO.2008.20.0642PubMedCentralCrossRefPubMed
15.
go back to reference Nusslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 1980, 287: 795-801. 10.1038/287795a0CrossRefPubMed Nusslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 1980, 287: 795-801. 10.1038/287795a0CrossRefPubMed
17.
go back to reference Jiang J, Hui CC: Hedgehog signaling in development and cancer. Dev Cell. 2008, 15: 801-812. 10.1016/j.devcel.2008.11.010CrossRefPubMed Jiang J, Hui CC: Hedgehog signaling in development and cancer. Dev Cell. 2008, 15: 801-812. 10.1016/j.devcel.2008.11.010CrossRefPubMed
18.
go back to reference Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev. 2008, 22: 2454-2472. 10.1101/gad.1693608CrossRefPubMed Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev. 2008, 22: 2454-2472. 10.1101/gad.1693608CrossRefPubMed
19.
go back to reference Cooper MK, Porter JA, Young KE, Beachy PA: Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998, 280: 1603-1607. 10.1126/science.280.5369.1603CrossRefPubMed Cooper MK, Porter JA, Young KE, Beachy PA: Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998, 280: 1603-1607. 10.1126/science.280.5369.1603CrossRefPubMed
20.
go back to reference Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002, 16: 2743-2748. 10.1101/gad.1025302PubMedCentralCrossRefPubMed Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002, 16: 2743-2748. 10.1101/gad.1025302PubMedCentralCrossRefPubMed
21.
go back to reference Wang Y, Zhou Z, Walsh CT, McMahon AP: Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA. 2009, 106: 2623-2628. 10.1073/pnas.0812110106PubMedCentralCrossRefPubMed Wang Y, Zhou Z, Walsh CT, McMahon AP: Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA. 2009, 106: 2623-2628. 10.1073/pnas.0812110106PubMedCentralCrossRefPubMed
22.
go back to reference Blank U, Karlsson G, Karlsson S: Signaling pathways governing stem-cell fate. Blood. 2008, 111: 492-503. 10.1182/blood-2007-07-075168CrossRefPubMed Blank U, Karlsson G, Karlsson S: Signaling pathways governing stem-cell fate. Blood. 2008, 111: 492-503. 10.1182/blood-2007-07-075168CrossRefPubMed
23.
go back to reference Lewis MT, Visbal AP: The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies. Ernst Schering Found Symp Proc. 2006, 181-217. Lewis MT, Visbal AP: The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies. Ernst Schering Found Symp Proc. 2006, 181-217.
24.
go back to reference Schugar RC, Robbins PD, Deasy BM: Small molecules in stem cell self-renewal and differentiation. Gene Ther. 2008, 15: 126-135. 10.1038/sj.gt.3303062CrossRefPubMed Schugar RC, Robbins PD, Deasy BM: Small molecules in stem cell self-renewal and differentiation. Gene Ther. 2008, 15: 126-135. 10.1038/sj.gt.3303062CrossRefPubMed
25.
go back to reference Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH, Scott MP: Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997, 276: 817-821. 10.1126/science.276.5313.817CrossRefPubMed Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH, Scott MP: Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997, 276: 817-821. 10.1126/science.276.5313.817CrossRefPubMed
26.
go back to reference Ruiz i Altaba A, Stecca B, Sanchez P: Hedgehog--Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett. 2004, 204: 145-157. 10.1016/S0304-3835(03)00451-8CrossRefPubMed Ruiz i Altaba A, Stecca B, Sanchez P: Hedgehog--Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett. 2004, 204: 145-157. 10.1016/S0304-3835(03)00451-8CrossRefPubMed
28.
go back to reference Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996, 85: 841-851. 10.1016/S0092-8674(00)81268-4CrossRefPubMed Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996, 85: 841-851. 10.1016/S0092-8674(00)81268-4CrossRefPubMed
29.
go back to reference Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH, Scott MP: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996, 272: 1668-1671. 10.1126/science.272.5268.1668CrossRefPubMed Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH, Scott MP: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996, 272: 1668-1671. 10.1126/science.272.5268.1668CrossRefPubMed
30.
go back to reference Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A: Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998, 391: 90-92. 10.1038/34201CrossRefPubMed Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A: Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998, 391: 90-92. 10.1038/34201CrossRefPubMed
31.
go back to reference Cheng SY, Yue S: Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res. 2008, 101: 29-43. 10.1016/S0065-230X(08)00402-8CrossRefPubMed Cheng SY, Yue S: Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res. 2008, 101: 29-43. 10.1016/S0065-230X(08)00402-8CrossRefPubMed
32.
go back to reference Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004, 431: 707-712. 10.1038/nature02962CrossRefPubMed Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004, 431: 707-712. 10.1038/nature02962CrossRefPubMed
33.
go back to reference Sanchez P, Clement V, Ruiz i Altaba A: Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer. Cancer Res. 2005, 65: 2990-2992.PubMed Sanchez P, Clement V, Ruiz i Altaba A: Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer. Cancer Res. 2005, 65: 2990-2992.PubMed
34.
go back to reference Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Ruiz i Altaba A: Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA. 2004, 101: 12561-12566. 10.1073/pnas.0404956101PubMedCentralCrossRefPubMed Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Ruiz i Altaba A: Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA. 2004, 101: 12561-12566. 10.1073/pnas.0404956101PubMedCentralCrossRefPubMed
35.
go back to reference McCarthy FR, Brown AJ: Autonomous Hedgehog signalling is undetectable in PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2008, 373: 109-112. 10.1016/j.bbrc.2008.05.169CrossRefPubMed McCarthy FR, Brown AJ: Autonomous Hedgehog signalling is undetectable in PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2008, 373: 109-112. 10.1016/j.bbrc.2008.05.169CrossRefPubMed
36.
go back to reference Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W: Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J Urol. 2007, 177: 1179-1185. 10.1016/j.juro.2006.10.032CrossRefPubMed Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W: Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J Urol. 2007, 177: 1179-1185. 10.1016/j.juro.2006.10.032CrossRefPubMed
37.
go back to reference Chen M, Tanner M, Levine AC, Levina E, Ohouo P, Buttyan R: Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells. Cell Cycle. 2009, 8: 149-157. 10.4161/cc.8.22.9957PubMedCentralCrossRefPubMed Chen M, Tanner M, Levine AC, Levina E, Ohouo P, Buttyan R: Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells. Cell Cycle. 2009, 8: 149-157. 10.4161/cc.8.22.9957PubMedCentralCrossRefPubMed
38.
go back to reference Azoulay S, Terry S, Chimingqi M, Sirab N, Faucon H, Gil Diez de Medina S, Moutereau S, Maille P, Soyeux P, Abbou C: Comparative expression of Hedgehog ligands at different stages of prostate carcinoma progression. J Pathol. 2008, 216: 460-470. 10.1002/path.2427CrossRefPubMed Azoulay S, Terry S, Chimingqi M, Sirab N, Faucon H, Gil Diez de Medina S, Moutereau S, Maille P, Soyeux P, Abbou C: Comparative expression of Hedgehog ligands at different stages of prostate carcinoma progression. J Pathol. 2008, 216: 460-470. 10.1002/path.2427CrossRefPubMed
39.
go back to reference Shaw G, Price AM, Ktori E, Bisson I, Purkis PE, McFaul S, Oliver RT, Prowse DM: Hedgehog signalling in androgen independent prostate cancer. Eur Urol. 2008, 54: 1333-1343. 10.1016/j.eururo.2008.01.070CrossRefPubMed Shaw G, Price AM, Ktori E, Bisson I, Purkis PE, McFaul S, Oliver RT, Prowse DM: Hedgehog signalling in androgen independent prostate cancer. Eur Urol. 2008, 54: 1333-1343. 10.1016/j.eururo.2008.01.070CrossRefPubMed
40.
go back to reference Narita S, So A, Ettinger S, Hayashi N, Muramaki M, Fazli L, Kim Y, Gleave ME: GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin Cancer Res. 2008, 14: 5769-5777. 10.1158/1078-0432.CCR-07-4282CrossRefPubMed Narita S, So A, Ettinger S, Hayashi N, Muramaki M, Fazli L, Kim Y, Gleave ME: GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin Cancer Res. 2008, 14: 5769-5777. 10.1158/1078-0432.CCR-07-4282CrossRefPubMed
41.
go back to reference Wang G, Wang J, Sadar MD: Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 2008, 68: 9918-9927. 10.1158/0008-5472.CAN-08-1718PubMedCentralCrossRefPubMed Wang G, Wang J, Sadar MD: Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 2008, 68: 9918-9927. 10.1158/0008-5472.CAN-08-1718PubMedCentralCrossRefPubMed
42.
go back to reference Dan S, Tanimura A, Yoshida M: Interaction of Gli2 with CREB protein on DNA elements in the long terminal repeat of human T-cell leukemia virus type 1 is responsible for transcriptional activation by tax protein. J Virol. 1999, 73: 3258-3263.PubMedCentralPubMed Dan S, Tanimura A, Yoshida M: Interaction of Gli2 with CREB protein on DNA elements in the long terminal repeat of human T-cell leukemia virus type 1 is responsible for transcriptional activation by tax protein. J Virol. 1999, 73: 3258-3263.PubMedCentralPubMed
43.
go back to reference Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K: Physical and functional interactions between Zic and Gli proteins. J Biol Chem. 2001, 276: 6889-6892. 10.1074/jbc.C000773200CrossRefPubMed Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K: Physical and functional interactions between Zic and Gli proteins. J Biol Chem. 2001, 276: 6889-6892. 10.1074/jbc.C000773200CrossRefPubMed
44.
go back to reference Yao HH, Whoriskey W, Capel B: Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 2002, 16: 1433-1440. 10.1101/gad.981202PubMedCentralCrossRefPubMed Yao HH, Whoriskey W, Capel B: Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 2002, 16: 1433-1440. 10.1101/gad.981202PubMedCentralCrossRefPubMed
45.
go back to reference Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HH: Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol. 2009, 329: 96-103. 10.1016/j.ydbio.2009.02.025PubMedCentralCrossRefPubMed Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HH: Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol. 2009, 329: 96-103. 10.1016/j.ydbio.2009.02.025PubMedCentralCrossRefPubMed
46.
go back to reference Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361: 1164-1172. 10.1056/NEJMoa0905360CrossRefPubMed Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361: 1164-1172. 10.1056/NEJMoa0905360CrossRefPubMed
47.
go back to reference Lauth M, Toftgard R: Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle. 2007, 6: 2458-2463.CrossRefPubMed Lauth M, Toftgard R: Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle. 2007, 6: 2458-2463.CrossRefPubMed
48.
go back to reference Lauth M, Bergstrom A, Shimokawa T, Toftgard R: Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007, 104: 8455-8460. 10.1073/pnas.0609699104PubMedCentralCrossRefPubMed Lauth M, Bergstrom A, Shimokawa T, Toftgard R: Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007, 104: 8455-8460. 10.1073/pnas.0609699104PubMedCentralCrossRefPubMed
49.
go back to reference Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B: The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988, 332: 371-374. 10.1038/332371a0CrossRefPubMed Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B: The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988, 332: 371-374. 10.1038/332371a0CrossRefPubMed
50.
go back to reference Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA, Muenke M: A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet. 2005, 14: 2181-2188. 10.1093/hmg/ddi222CrossRefPubMed Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA, Muenke M: A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet. 2005, 14: 2181-2188. 10.1093/hmg/ddi222CrossRefPubMed
Metadata
Title
Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells
Authors
Mengqian Chen
Michael A. Feuerstein
Elina Levina
Prateek S. Baghel
Richard D. Carkner
Matthew J. Tanner
Michael Shtutman
Francis Vacherot
Stéphane Terry
Alexandre de la Taille
Ralph Buttyan
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-89

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine