Skip to main content
Top
Published in: Metabolic Brain Disease 2/2015

01-04-2015 | Research Article

Microglia: dismantling and rebuilding circuits after acute neurological injury

Authors: Jenna M. Ziebell, P. David Adelson, Jonathan Lifshitz

Published in: Metabolic Brain Disease | Issue 2/2015

Login to get access

Abstract

The brain is comprised of neurons and its support system including astrocytes, glial cells and microglia, thereby forming neurovascular units. Neurons require support from glial cells to establish and maintain functional circuits, but microglia are often overlooked. Microglia function as the immune cell of the central nervous system, acting to monitor the microenvironment for changes in signaling, pathogens and injury. More recently, other functional roles for microglia within the healthy brain have been identified, including regulating synapse formation, elimination and function. This review aims to highlight and discuss these alternate microglial roles in the healthy and in contrast, diseased brain with a focus on two acute neurological diseases, traumatic brain injury and epilepsy. In these conditions, microglial roles in synaptic stripping and stabilization as part of neuronal:glial interactions may position them as mediators of the transition between injury-induced circuit dismantling and subsequent reorganization. Increased understanding of microglia roles could identify therapeutic targets to mitigate the consequences of neurological disease.
Literature
go back to reference Adalbert R, Gilley J, Coleman MP (2007) Abeta, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13(4):135–142CrossRefPubMed Adalbert R, Gilley J, Coleman MP (2007) Abeta, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13(4):135–142CrossRefPubMed
go back to reference Ajami B et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543CrossRefPubMed Ajami B et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543CrossRefPubMed
go back to reference Annunziato L, Boscia F, Pignataro G (2013) Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 33(7):969–982CrossRefPubMedCentralPubMed Annunziato L, Boscia F, Pignataro G (2013) Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 33(7):969–982CrossRefPubMedCentralPubMed
go back to reference Araque A et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215CrossRefPubMed Araque A et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215CrossRefPubMed
go back to reference Barclay AN et al (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290CrossRefPubMed Barclay AN et al (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290CrossRefPubMed
go back to reference Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088CrossRefPubMed Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088CrossRefPubMed
go back to reference Beumer W et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92(5):959–975CrossRefPubMed Beumer W et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92(5):959–975CrossRefPubMed
go back to reference Biber K et al (2006) Chemokines and their receptors in central nervous system disease. Curr Drug Targets 7(1):29–46CrossRefPubMed Biber K et al (2006) Chemokines and their receptors in central nervous system disease. Curr Drug Targets 7(1):29–46CrossRefPubMed
go back to reference Biber K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602CrossRefPubMed Biber K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602CrossRefPubMed
go back to reference Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61(1):62–70CrossRefPubMed Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61(1):62–70CrossRefPubMed
go back to reference Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85(2):145–157CrossRefPubMed Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85(2):145–157CrossRefPubMed
go back to reference Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69CrossRefPubMed Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69CrossRefPubMed
go back to reference Boer K et al (2006) Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 173(1–2):188–195CrossRefPubMed Boer K et al (2006) Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 173(1–2):188–195CrossRefPubMed
go back to reference Brockhaus J, Moller T, Kettenmann H (1996) Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16(1):81–90CrossRefPubMed Brockhaus J, Moller T, Kettenmann H (1996) Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16(1):81–90CrossRefPubMed
go back to reference Cardona AE et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924CrossRefPubMed Cardona AE et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924CrossRefPubMed
go back to reference Carthew HL, Ziebell JM, Vink R (2012) Substance P-induced changes in cell genesis following diffuse traumatic brain injury. Neuroscience 214:78–83CrossRefPubMed Carthew HL, Ziebell JM, Vink R (2012) Substance P-induced changes in cell genesis following diffuse traumatic brain injury. Neuroscience 214:78–83CrossRefPubMed
go back to reference Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed
go back to reference Drexel M, Preidt AP, Sperk G (2012) Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63(5):806–817CrossRefPubMedCentralPubMed Drexel M, Preidt AP, Sperk G (2012) Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63(5):806–817CrossRefPubMedCentralPubMed
go back to reference Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33(1):23–34CrossRefPubMed Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33(1):23–34CrossRefPubMed
go back to reference Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18(4):319–331CrossRefPubMed Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18(4):319–331CrossRefPubMed
go back to reference Hailer NP et al (1997) Fluorescent dye prelabelled microglial cells migrate into organotypic hippocampal slice cultures and ramify. Eur J Neurosci 9(4):863–866CrossRefPubMed Hailer NP et al (1997) Fluorescent dye prelabelled microglial cells migrate into organotypic hippocampal slice cultures and ramify. Eur J Neurosci 9(4):863–866CrossRefPubMed
go back to reference Hall KD, Lifshitz J (2010) Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 1323:161–173CrossRefPubMedCentralPubMed Hall KD, Lifshitz J (2010) Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 1323:161–173CrossRefPubMedCentralPubMed
go back to reference Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394CrossRefPubMed Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394CrossRefPubMed
go back to reference Hoek RM et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771CrossRefPubMed Hoek RM et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771CrossRefPubMed
go back to reference Kalla R et al (2001) Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. J Comp Neurol 436(2):182–201CrossRefPubMed Kalla R et al (2001) Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. J Comp Neurol 436(2):182–201CrossRefPubMed
go back to reference Kelley BJ et al (2006) Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp Neurol 198(2):350–360CrossRefPubMed Kelley BJ et al (2006) Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp Neurol 198(2):350–360CrossRefPubMed
go back to reference Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18CrossRefPubMed Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18CrossRefPubMed
go back to reference Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318CrossRefPubMed Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318CrossRefPubMed
go back to reference Ladeby R et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206CrossRefPubMed Ladeby R et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206CrossRefPubMed
go back to reference Lazar G, Pal E (1996) Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog’s brain and spinal cord. Glia 16(2):101–107CrossRefPubMed Lazar G, Pal E (1996) Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog’s brain and spinal cord. Glia 16(2):101–107CrossRefPubMed
go back to reference Learoyd AE, Lifshitz J (2012) Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse brain-injury. Behav Brain Res 226(1):197–204CrossRefPubMedCentralPubMed Learoyd AE, Lifshitz J (2012) Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse brain-injury. Behav Brain Res 226(1):197–204CrossRefPubMedCentralPubMed
go back to reference Lifshitz J, Lisembee AM (2012) Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 217(1):49–61CrossRefPubMedCentralPubMed Lifshitz J, Lisembee AM (2012) Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 217(1):49–61CrossRefPubMedCentralPubMed
go back to reference Lifshitz J, Kelley BJ, Povlishock JT (2007) Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 66(3):218–229CrossRefPubMed Lifshitz J, Kelley BJ, Povlishock JT (2007) Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 66(3):218–229CrossRefPubMed
go back to reference McNamara KC, Lisembee AM, Lifshitz J (2010) The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 27(4):695–706CrossRefPubMedCentralPubMed McNamara KC, Lisembee AM, Lifshitz J (2010) The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 27(4):695–706CrossRefPubMedCentralPubMed
go back to reference Mizuno T et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70CrossRefPubMed Mizuno T et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70CrossRefPubMed
go back to reference Morganti-Kossmann MC et al (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16(3):165–177CrossRefPubMed Morganti-Kossmann MC et al (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16(3):165–177CrossRefPubMed
go back to reference Morris GP et al (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53CrossRefPubMed Morris GP et al (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53CrossRefPubMed
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318CrossRefPubMed
go back to reference Pardo CA et al (2004) The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 45(5):516–526CrossRefPubMed Pardo CA et al (2004) The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 45(5):516–526CrossRefPubMed
go back to reference Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047PubMed Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047PubMed
go back to reference Prinz M et al (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235CrossRefPubMed Prinz M et al (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235CrossRefPubMed
go back to reference Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed
go back to reference Schafer DP, Stevens B (2010) Synapse elimination during development and disease: immune molecules take centre stage. Biochem Soc Trans 38(2):476–481CrossRefPubMed Schafer DP, Stevens B (2010) Synapse elimination during development and disease: immune molecules take centre stage. Biochem Soc Trans 38(2):476–481CrossRefPubMed
go back to reference Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36CrossRefPubMedCentralPubMed Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36CrossRefPubMedCentralPubMed
go back to reference Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21(1):5–10CrossRefPubMed Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21(1):5–10CrossRefPubMed
go back to reference Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20(2):160–172CrossRefPubMed Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20(2):160–172CrossRefPubMed
go back to reference Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389CrossRefPubMed Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389CrossRefPubMed
go back to reference Stevens B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178CrossRefPubMed Stevens B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178CrossRefPubMed
go back to reference Svensson M, Aldskogius H (1993) Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol 120(1):123–131CrossRefPubMed Svensson M, Aldskogius H (1993) Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol 120(1):123–131CrossRefPubMed
go back to reference Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370CrossRefPubMed Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370CrossRefPubMed
go back to reference Veerhuis R et al (1999) Cytokines associated with amyloid plaques in Alzheimer’s disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp Neurol 160(1):289–299CrossRefPubMed Veerhuis R et al (1999) Cytokines associated with amyloid plaques in Alzheimer’s disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp Neurol 160(1):289–299CrossRefPubMed
go back to reference Wake H et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980CrossRefPubMed Wake H et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980CrossRefPubMed
go back to reference Wake H et al (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217CrossRefPubMed Wake H et al (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217CrossRefPubMed
go back to reference Wang CC et al (1996) Immunohistochemical study of amoeboid microglial cells in fetal rat brain. J Anat 189(Pt 3):567–574PubMedCentralPubMed Wang CC et al (1996) Immunohistochemical study of amoeboid microglial cells in fetal rat brain. J Anat 189(Pt 3):567–574PubMedCentralPubMed
go back to reference Wanner IB et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33(31):12870–12886CrossRefPubMedCentralPubMed Wanner IB et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33(31):12870–12886CrossRefPubMedCentralPubMed
go back to reference Wirenfeldt M et al (2009) Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis 34(3):432–440CrossRefPubMedCentralPubMed Wirenfeldt M et al (2009) Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis 34(3):432–440CrossRefPubMedCentralPubMed
go back to reference Woodruff TM et al (2010) The role of the complement system and the activation fragment C5a in the central nervous system. Neuromol Med 12(2):179–192CrossRef Woodruff TM et al (2010) The role of the complement system and the activation fragment C5a in the central nervous system. Neuromol Med 12(2):179–192CrossRef
go back to reference Wright GJ et al (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102(2):173–179CrossRefPubMedCentralPubMed Wright GJ et al (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102(2):173–179CrossRefPubMedCentralPubMed
go back to reference Yamada J, Nakanishi H, Jinno S (2011) Differential involvement of perineuronal astrocytes and microglia in synaptic stripping after hypoglossal axotomy. Neuroscience 182:1–10CrossRefPubMed Yamada J, Nakanishi H, Jinno S (2011) Differential involvement of perineuronal astrocytes and microglia in synaptic stripping after hypoglossal axotomy. Neuroscience 182:1–10CrossRefPubMed
go back to reference Ziebell JM et al (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105CrossRefPubMed Ziebell JM et al (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105CrossRefPubMed
go back to reference Ziebell JM et al (2012) Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation 9:247CrossRefPubMedCentralPubMed Ziebell JM et al (2012) Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation 9:247CrossRefPubMedCentralPubMed
go back to reference Zujovic V et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315CrossRefPubMed Zujovic V et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315CrossRefPubMed
Metadata
Title
Microglia: dismantling and rebuilding circuits after acute neurological injury
Authors
Jenna M. Ziebell
P. David Adelson
Jonathan Lifshitz
Publication date
01-04-2015
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 2/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9539-y

Other articles of this Issue 2/2015

Metabolic Brain Disease 2/2015 Go to the issue