Skip to main content
Top
Published in: BMC Neurology 1/2020

01-12-2020 | Methotrexate | Research article

An immunotherapy effect analysis in Rasmussen encephalitis

Authors: Zuzana Liba, Martina Vaskova, Josef Zamecnik, Jana Kayserova, Hana Nohejlova, Matyas Ebel, Jan Sanda, Gonzalo Alonso Ramos-Rivera, Klara Brozova, Petr Liby, Michal Tichy, Pavel Krsek

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Immune-mediated mechanisms substantially contribute to the Rasmussen encephalitis (RE) pathology, but for unknown reasons, immunotherapy is generally ineffective in patients who have already developed intractable epilepsy; overall laboratory data regarding the effect of immunotherapy on patients with RE are limited. We analyzed multiple samples from seven differently treated children with RE and evaluated the effects of immunotherapies on neuroinflammation. Immunotherapy was introduced to all patients at the time of intractable epilepsy and they all had to undergo hemispherothomy.

Methods

Immunohistochemistry, flow cytometry, Luminex multiplex bead and enzyme-linked immunosorbent assay techniques were combined to determine: 1) inflammatory changes and lymphocyte subpopulations in 45 brain tissues; 2) lymphocyte subpopulations and the levels of 12 chemokines/cytokines in 24 cerebrospinal fluid (CSF) samples and 30 blood samples; and 3) the dynamics of these parameters in four RE patients from whom multiple samples were collected.

Results

Sustained T cell-targeted therapy with cyclophosphamide, natalizumab, alemtuzumab, and intrathecal methotrexate (ITMTX), but not with azathioprine, substantially reduced inflammation in brain tissues. Despite the therapy, the distributions of CD8+ T cells and the levels of C-X-C motif ligand (CXCL) 10, CXCL13, and B cell activating factor (BAFF) in patients’ CSF remained increased compared to controls. A therapeutic approach combining alemtuzumab and ITMTX was the most effective in producing simultaneous reductions in histopathological inflammatory findings and in the numbers of activated CD8+ T cells in the brain tissue, as well as in the overall CD8+ T cell population and chemokine/cytokine production in the CSF.

Conclusions

We provide evidence that various T cell-targeted immunotherapies reduced inflammation in the brains of RE patients. The observation that intractable epilepsy persisted in all of the patients suggests a relative independence of seizure activity on the presence of T cells in the brain later in the disease course. Thus, new therapeutic targets must be identified. CXCL10, CXCL13 and BAFF levels were substantially increased in CSF from all patients and their significance in RE pathology remains to be addressed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Varadkar S, Bien CG, Kruse CA, et al. Rasmussen ́s encephalitis: clinical feature, pathology and treatment advances. Lancet Neurol. 2014;13(2):195–205.PubMedPubMedCentral Varadkar S, Bien CG, Kruse CA, et al. Rasmussen ́s encephalitis: clinical feature, pathology and treatment advances. Lancet Neurol. 2014;13(2):195–205.PubMedPubMedCentral
2.
go back to reference Bauer J, Elger CE, Hans VH, et al. Astrocytes are a specific immunological target in Rasmussen's encephalitis. Ann Neurol. 2007;62(1):67–80.PubMed Bauer J, Elger CE, Hans VH, et al. Astrocytes are a specific immunological target in Rasmussen's encephalitis. Ann Neurol. 2007;62(1):67–80.PubMed
3.
go back to reference Al Nimer F, Jelcic I, Kempf C, et al. Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm. 2017;5(1):e419.PubMedPubMedCentral Al Nimer F, Jelcic I, Kempf C, et al. Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm. 2017;5(1):e419.PubMedPubMedCentral
4.
go back to reference Schwab N, Bien CG, Waschbisch A, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain. 2009;132(Pt 5):1236–46.PubMed Schwab N, Bien CG, Waschbisch A, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain. 2009;132(Pt 5):1236–46.PubMed
5.
go back to reference Schneider-Hohendorf T, Mohan H, Bien CG, et al. CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun. 2016;7:11153.PubMedPubMedCentral Schneider-Hohendorf T, Mohan H, Bien CG, et al. CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun. 2016;7:11153.PubMedPubMedCentral
6.
go back to reference Varadkar S, Chong WK, Robinson E, et al. Azathioprine therapy in Rasmussen syndrome. Epilepsy Curr. 2012;12(Suppl 1):417. Varadkar S, Chong WK, Robinson E, et al. Azathioprine therapy in Rasmussen syndrome. Epilepsy Curr. 2012;12(Suppl 1):417.
7.
go back to reference Bien CG, Tiemeier H, Sassen R, et al. Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia. 2013;54(3):543–50.PubMed Bien CG, Tiemeier H, Sassen R, et al. Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia. 2013;54(3):543–50.PubMed
8.
go back to reference Liba Z, Muthaffar O, Tang J, et al. Rasmussen encephalitis: response of early immunotherapy in a case of immune-mediated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e69.PubMedPubMedCentral Liba Z, Muthaffar O, Tang J, et al. Rasmussen encephalitis: response of early immunotherapy in a case of immune-mediated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e69.PubMedPubMedCentral
9.
go back to reference Takahashi Y, Yamazaki E, Mine J, et al. Immunomodulatory therapy versus surgery for Rasmussen syndrome in early childhood. Brain and Development. 2013;35:778–85.PubMed Takahashi Y, Yamazaki E, Mine J, et al. Immunomodulatory therapy versus surgery for Rasmussen syndrome in early childhood. Brain and Development. 2013;35:778–85.PubMed
10.
go back to reference Thilo B, Stingele R, Knudsen K, et al. A case of Rasmussen encephalitis treated with rituximab. Nat Rev Neurol. 2009;5(8):458–62.PubMed Thilo B, Stingele R, Knudsen K, et al. A case of Rasmussen encephalitis treated with rituximab. Nat Rev Neurol. 2009;5(8):458–62.PubMed
11.
go back to reference Prufer M, Hahn G, Friebel D, et al. Rituximab and cyclophosphamide an alternative in immunomodulatory therapy in Rasmussen encephalitis. Neuropediatrics. 2013;44:PS13–1195. Prufer M, Hahn G, Friebel D, et al. Rituximab and cyclophosphamide an alternative in immunomodulatory therapy in Rasmussen encephalitis. Neuropediatrics. 2013;44:PS13–1195.
12.
go back to reference Bittner S, Simon OJ, Gobel K, Bien CG, Meuth SG, Wiendl H. Rasmussen encephalitis treated with natalizumab. Neurology. 2013;81:395–7.PubMed Bittner S, Simon OJ, Gobel K, Bien CG, Meuth SG, Wiendl H. Rasmussen encephalitis treated with natalizumab. Neurology. 2013;81:395–7.PubMed
13.
go back to reference Liba Z, Sedlacek P, Sebronova V, Maulisova, et al. Alemtuzumab and intrathecal methotrexate failed in the therapy of Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e354.PubMedPubMedCentral Liba Z, Sedlacek P, Sebronova V, Maulisova, et al. Alemtuzumab and intrathecal methotrexate failed in the therapy of Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e354.PubMedPubMedCentral
14.
go back to reference Bien CG, Granata T, Antozzi JH, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:451–71. Bien CG, Granata T, Antozzi JH, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:451–71.
15.
go back to reference Villemure JG, Daniel RT. Peri-insular hemispherotomy in paediatric epilepsy. Childs Nerv Syst. 2006;22(8):967–81.PubMed Villemure JG, Daniel RT. Peri-insular hemispherotomy in paediatric epilepsy. Childs Nerv Syst. 2006;22(8):967–81.PubMed
16.
go back to reference Bien CG, Urbach H, Deckert M, et al. Diagnosis and staging of Rasmussen’s encephalitis by serial MRI and histopathology. Neurology. 2002;58(2):250–7.PubMedCrossRef Bien CG, Urbach H, Deckert M, et al. Diagnosis and staging of Rasmussen’s encephalitis by serial MRI and histopathology. Neurology. 2002;58(2):250–7.PubMedCrossRef
17.
go back to reference Bien CG, Widman G, Urbach H, et al. The natural history of Rasmussen’s encephalitis. Brain. 2002;125(Pt 8):1751–9.PubMedCrossRef Bien CG, Widman G, Urbach H, et al. The natural history of Rasmussen’s encephalitis. Brain. 2002;125(Pt 8):1751–9.PubMedCrossRef
18.
go back to reference Tariq H, Gilbert A, Sharkey FE. Intrathecal methotrexate-induced necrotizing myelopathy: a case report and review of histologic features. Clin Med Insights Pathol. 2018;11:1179555718809071.PubMedPubMedCentralCrossRef Tariq H, Gilbert A, Sharkey FE. Intrathecal methotrexate-induced necrotizing myelopathy: a case report and review of histologic features. Clin Med Insights Pathol. 2018;11:1179555718809071.PubMedPubMedCentralCrossRef
19.
go back to reference Sadiq SA, Simon EV, Puccio LM. Intrathecal methotrexate treatment in multiple sclerosis. J Neurol. 2010;257(11):1806–11.PubMedCrossRef Sadiq SA, Simon EV, Puccio LM. Intrathecal methotrexate treatment in multiple sclerosis. J Neurol. 2010;257(11):1806–11.PubMedCrossRef
20.
go back to reference Havrdova E, Horakova D, Kovarova I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord. 2015;8(1):31–45.PubMedPubMedCentral Havrdova E, Horakova D, Kovarova I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord. 2015;8(1):31–45.PubMedPubMedCentral
21.
go back to reference Ruck T, Afzali AM, Lukat KF, et al. ALAIN01-Alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurol. 2016;16(1):34.PubMedPubMedCentral Ruck T, Afzali AM, Lukat KF, et al. ALAIN01-Alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurol. 2016;16(1):34.PubMedPubMedCentral
22.
go back to reference Simon M, Ipek R, Homola GA, et al. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation. 2018;15(1):225.PubMedPubMedCentral Simon M, Ipek R, Homola GA, et al. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation. 2018;15(1):225.PubMedPubMedCentral
23.
go back to reference Stüve O, Marra CM, Bar-Or A, et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol. 2006;63(10):1383–7.PubMed Stüve O, Marra CM, Bar-Or A, et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol. 2006;63(10):1383–7.PubMed
24.
go back to reference Kothur K, Wienholt L, Mohammad SS, et al. Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and Enteroviral encephalitis. PLoS One. 2016;11(8):e0161656.PubMedPubMedCentral Kothur K, Wienholt L, Mohammad SS, et al. Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and Enteroviral encephalitis. PLoS One. 2016;11(8):e0161656.PubMedPubMedCentral
25.
go back to reference Kowarik MC, Cepok S, Sellner J, et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012;9:93.PubMedPubMedCentral Kowarik MC, Cepok S, Sellner J, et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012;9:93.PubMedPubMedCentral
26.
go back to reference Pranzatelli MR. Advances in biomarker-guided therapy for pediatric- and adult-onset Neuroinflammatory disorders: targeting chemokines/cytokines. Front Immunol. 2018;9:557.PubMedPubMedCentral Pranzatelli MR. Advances in biomarker-guided therapy for pediatric- and adult-onset Neuroinflammatory disorders: targeting chemokines/cytokines. Front Immunol. 2018;9:557.PubMedPubMedCentral
27.
go back to reference Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One. 2019;14(7):e0219987.PubMedPubMedCentral Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One. 2019;14(7):e0219987.PubMedPubMedCentral
29.
go back to reference Kurachi M, Kurachi J, Suenaga F, et al. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration. J Exp Med. 2011;208(8):1605–20.PubMedPubMedCentral Kurachi M, Kurachi J, Suenaga F, et al. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration. J Exp Med. 2011;208(8):1605–20.PubMedPubMedCentral
30.
go back to reference Phares TW, Stohlman SA, Hinton DR, Bergmann CC. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87(6):3382–92.PubMedPubMedCentral Phares TW, Stohlman SA, Hinton DR, Bergmann CC. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87(6):3382–92.PubMedPubMedCentral
31.
go back to reference Mirones I, de Prada I, Gómez AM, et al. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatr Neurol. 2013;49(6):451–457.e1.PubMed Mirones I, de Prada I, Gómez AM, et al. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatr Neurol. 2013;49(6):451–457.e1.PubMed
32.
go back to reference Mellergård J, Edström M, Vrethem M, Ernerudh J, Dahle C. Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler. 2010;16(2):208–17.PubMed Mellergård J, Edström M, Vrethem M, Ernerudh J, Dahle C. Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler. 2010;16(2):208–17.PubMed
33.
go back to reference Kimura K, Nakamura M, Sato W, et al. Disrupted balance of T cells under natalizumab treatment in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e210.PubMedPubMedCentral Kimura K, Nakamura M, Sato W, et al. Disrupted balance of T cells under natalizumab treatment in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e210.PubMedPubMedCentral
34.
go back to reference Chen M, Lin X, Liu Y, et al. The function of BAFF on T helper cells in autoimmunity. Cytokine Growth Factor Rev. 2014;25(3):301–5.PubMed Chen M, Lin X, Liu Y, et al. The function of BAFF on T helper cells in autoimmunity. Cytokine Growth Factor Rev. 2014;25(3):301–5.PubMed
35.
go back to reference Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707.PubMed Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707.PubMed
36.
go back to reference Liba Z, Muthaffar O, Tang J, et al. Rasmussen encephalitis: response to early immunotherapy in a case of immune-mediated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e69.PubMedPubMedCentral Liba Z, Muthaffar O, Tang J, et al. Rasmussen encephalitis: response to early immunotherapy in a case of immune-mediated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e69.PubMedPubMedCentral
37.
go back to reference Kebir H, Carmant L, Fontaine F, et al. Humanized mouse model of Rasmussen's encephalitis supports the immune-mediated hypothesis. J Clin Invest. 2018;128(5):2000–9.PubMedPubMedCentral Kebir H, Carmant L, Fontaine F, et al. Humanized mouse model of Rasmussen's encephalitis supports the immune-mediated hypothesis. J Clin Invest. 2018;128(5):2000–9.PubMedPubMedCentral
38.
go back to reference Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29(1):142–60.PubMed Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29(1):142–60.PubMed
39.
go back to reference Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017;14(1):10.PubMedPubMedCentralCrossRef Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017;14(1):10.PubMedPubMedCentralCrossRef
40.
go back to reference Lagarde S, Villeneuve N, Trébuchon A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen's encephalitis: an open pilot study. Epilepsia. 2016;57(6):956–66.PubMed Lagarde S, Villeneuve N, Trébuchon A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen's encephalitis: an open pilot study. Epilepsia. 2016;57(6):956–66.PubMed
Metadata
Title
An immunotherapy effect analysis in Rasmussen encephalitis
Authors
Zuzana Liba
Martina Vaskova
Josef Zamecnik
Jana Kayserova
Hana Nohejlova
Matyas Ebel
Jan Sanda
Gonzalo Alonso Ramos-Rivera
Klara Brozova
Petr Liby
Michal Tichy
Pavel Krsek
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01932-9

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue