Skip to main content
Top
Published in: Current Diabetes Reports 6/2024

03-04-2024 | Metformin | REVIEW

Metformin: Past, Present, and Future

Authors: Sandeep Chaudhary, Amitabh Kulkarni

Published in: Current Diabetes Reports | Issue 6/2024

Login to get access

Abstract

Purpose of Review

This review provides the most recent update of metformin, a biguanide oral antihyperglycemic drug used as a first-line treatment in type 2 diabetes mellitus.

Recent Findings

Metformin continues to dominate in the world of antidiabetics, and its use will continue to rise because of its high efficiency and easy availability. Apart from type 2 diabetes, research is exploring its potential in other conditions such as cancer, memory loss, bone disorders, immunological diseases, and aging.

Summary

Metformin is the most prescribed oral antidiabetic worldwide. It has been in practical use for the last six decades and continues to be the preferred drug for newly diagnosed type 2 diabetes mellitus. It reduces glucose levels by decreasing hepatic glucose production, reducing intestinal glucose absorption, and increasing insulin sensitivity. It can be used as monotherapy or combined with other antidiabetics like sulfonylureas, DPP-4 inhibitors, SGLT-2 inhibitors, or insulin, improving its efficacy. Metformin can be used once or twice daily, depending on requirements. Prolonged usage of metformin may lead to abdominal discomfort, deficiency of Vitamin B12, or lactic acidosis. It should be used carefully in patients with renal impairment. Recent studies have explored additional benefits of metformin in polycystic ovarian disease, gestational diabetes mellitus, cognitive disorders, and immunological diseases. However, more extensive studies are needed to confirm these additional benefits.
Literature
1.
go back to reference Bailey CJ, Day C. Metformin: its botanical background. Pract Diabetes Int. 2004;21(3):115–7.CrossRef Bailey CJ, Day C. Metformin: its botanical background. Pract Diabetes Int. 2004;21(3):115–7.CrossRef
2.
go back to reference Sterne J. Innovations in antidiabetics. NN dimethylamine guanyl guanidine [NNDG]. Maroc Med. 1957;36:1295–6. Sterne J. Innovations in antidiabetics. NN dimethylamine guanyl guanidine [NNDG]. Maroc Med. 1957;36:1295–6.
3.
go back to reference Ra D. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:541–9.CrossRef Ra D. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:541–9.CrossRef
4.
go back to reference Campbell IW. Metformin: a 60-year odyssey with the journey still continuing–a personal commentary from Professor Ian Campbell. Curr Med Res Opin. 2022;38(1):55–8.CrossRefPubMed Campbell IW. Metformin: a 60-year odyssey with the journey still continuing–a personal commentary from Professor Ian Campbell. Curr Med Res Opin. 2022;38(1):55–8.CrossRefPubMed
6.
go back to reference LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77–96.CrossRefPubMed LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77–96.CrossRefPubMed
8.
go back to reference Misra P, Chakrabarti R. The role of AMP kinase in diabetes. Indian J Med Res. 2007;125(3):389–98.PubMed Misra P, Chakrabarti R. The role of AMP kinase in diabetes. Indian J Med Res. 2007;125(3):389–98.PubMed
9.
go back to reference Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569–89.CrossRefPubMed Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569–89.CrossRefPubMed
10.
go back to reference Gerstein HC, Pare G, Hess S, Ford RJ, Sjaarda J, Raman K, McQueen M, Lee S, Haenel H, Steinberg GR. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care. 2017;40(2):280–3.CrossRefPubMed Gerstein HC, Pare G, Hess S, Ford RJ, Sjaarda J, Raman K, McQueen M, Lee S, Haenel H, Steinberg GR. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care. 2017;40(2):280–3.CrossRefPubMed
11.
go back to reference Proctor WR, Ming X, Bourdet D, Han TK, Everett RS, Thakker DR. Why does the intestine lack basolateral efflux transporters for cationic compounds? A provocative hypothesis. J Pharm Sci. 2016;105(2):484–96.CrossRefPubMed Proctor WR, Ming X, Bourdet D, Han TK, Everett RS, Thakker DR. Why does the intestine lack basolateral efflux transporters for cationic compounds? A provocative hypothesis. J Pharm Sci. 2016;105(2):484–96.CrossRefPubMed
12.
go back to reference •• Tobar N, Rocha GZ, Santos A, Guadagnini D, Assalin HB, Camargo JA, Gonçalves AE, Pallis FR, Oliveira AG, Rocco SA, Neto RM. Metformin acts in the gut and induces gut-liver crosstalk. Proc Natl Acad Sci. 2023;120(4):e2211933120. https://doi.org/10.1073/pnas.2211933120. This study indicate that the first site of metformin action is the gut, and through gut-portal vein-liver crosstalk, it may have a role in the control of HGP, integrating the sites and the mechanisms of metformin action.CrossRefPubMedCentralPubMed •• Tobar N, Rocha GZ, Santos A, Guadagnini D, Assalin HB, Camargo JA, Gonçalves AE, Pallis FR, Oliveira AG, Rocco SA, Neto RM. Metformin acts in the gut and induces gut-liver crosstalk. Proc Natl Acad Sci. 2023;120(4):e2211933120. https://​doi.​org/​10.​1073/​pnas.​2211933120. This study indicate that the first site of metformin action is the gut, and through gut-portal vein-liver crosstalk, it may have a role in the control of HGP, integrating the sites and the mechanisms of metformin action.CrossRefPubMedCentralPubMed
13.
go back to reference Chang HS, Kim SJ, Kim YH. Association between colonic 18 F-FDG uptake and glycemic control in patients with diabetes mellitus. Nucl Med Mol Imaging. 2020;54:168–74.PubMedCentralCrossRefPubMed Chang HS, Kim SJ, Kim YH. Association between colonic 18 F-FDG uptake and glycemic control in patients with diabetes mellitus. Nucl Med Mol Imaging. 2020;54:168–74.PubMedCentralCrossRefPubMed
14.
go back to reference Breining P, Jensen JB, Sundelin EI, Gormsen LC, Jakobsen S, Busk M, Rolighed L, Bross P, Fernandez-Guerra P, Markussen LK, Rasmussen NE. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes Metab. 2018;20(9):2264–73.CrossRefPubMed Breining P, Jensen JB, Sundelin EI, Gormsen LC, Jakobsen S, Busk M, Rolighed L, Bross P, Fernandez-Guerra P, Markussen LK, Rasmussen NE. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes Metab. 2018;20(9):2264–73.CrossRefPubMed
15.
go back to reference Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science. 2023;379(6630):351–7.PubMedCentralCrossRefPubMed Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science. 2023;379(6630):351–7.PubMedCentralCrossRefPubMed
16.
go back to reference Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, Wu YQ, Lin SY, Lin SC. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521–2.CrossRefPubMed Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, Wu YQ, Lin SY, Lin SC. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521–2.CrossRefPubMed
17.
go back to reference Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signaling by decreasing the production of cyclic AMP. Nature. 2013;494(7436):256–60.PubMedCentralCrossRefPubMed Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signaling by decreasing the production of cyclic AMP. Nature. 2013;494(7436):256–60.PubMedCentralCrossRefPubMed
18.
go back to reference •• Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinolo. 2023;19(8):460–76. This Review highlights the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses like treatment of cancer, age-related diseases, inflammatory diseases and COVID-19.CrossRef •• Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinolo. 2023;19(8):460–76. This Review highlights the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses like treatment of cancer, age-related diseases, inflammatory diseases and COVID-19.CrossRef
19.
go back to reference Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.CrossRefPubMed Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.CrossRefPubMed
20.
go back to reference Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, Marinopoulos SS, Puhan MA, Ranasinghe P, Block L, Nicholson WK. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.PubMedCentralCrossRefPubMed Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, Marinopoulos SS, Puhan MA, Ranasinghe P, Block L, Nicholson WK. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.PubMedCentralCrossRefPubMed
21.
go back to reference Davidson MB, Peters AL. An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med. 1997;102(1):99–110.CrossRefPubMed Davidson MB, Peters AL. An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med. 1997;102(1):99–110.CrossRefPubMed
22.
go back to reference Fujita Y, Inagaki N. Metformin: new preparations and nonglycemic benefits. Curr DiabRep. 2017;17:1. Fujita Y, Inagaki N. Metformin: new preparations and nonglycemic benefits. Curr DiabRep. 2017;17:1.
23.
go back to reference Schwartz S, Fonseca V, Berner B, Cramer M, Chiang YK, Lewin A. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006;29(4):759–64.CrossRefPubMed Schwartz S, Fonseca V, Berner B, Cramer M, Chiang YK, Lewin A. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006;29(4):759–64.CrossRefPubMed
25.
go back to reference De Jager J, Kooy A, Lehert P, Wulffelé MG, Van der Kolk J, Bets D, Verburg J, Donker AJ, Stehouwer CD. Long-term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomized placebo-controlled trial. BMJ. 2010;20:340. De Jager J, Kooy A, Lehert P, Wulffelé MG, Van der Kolk J, Bets D, Verburg J, Donker AJ, Stehouwer CD. Long-term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomized placebo-controlled trial. BMJ. 2010;20:340.
26.
go back to reference Aroda VR, Edelstein SL, Goldberg RB, Knowler WC, Marcovina SM, Orchard TJ, Bray GA, Schade DS, Temprosa MG, White NH, Crandall JP. Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J Clin Endocrinol Metab. 2016;101(4):1754–61.PubMedCentralCrossRefPubMed Aroda VR, Edelstein SL, Goldberg RB, Knowler WC, Marcovina SM, Orchard TJ, Bray GA, Schade DS, Temprosa MG, White NH, Crandall JP. Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J Clin Endocrinol Metab. 2016;101(4):1754–61.PubMedCentralCrossRefPubMed
27.
go back to reference Richy FF, Sabidó-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37(8):2291–5.CrossRefPubMed Richy FF, Sabidó-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37(8):2291–5.CrossRefPubMed
28.
go back to reference Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. Jama. 2014;312(24):2668–75.PubMedCentralCrossRefPubMed Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. Jama. 2014;312(24):2668–75.PubMedCentralCrossRefPubMed
29.
go back to reference Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, Klingensmith G, Walravens P. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16(3):196–203.CrossRefPubMed Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, Klingensmith G, Walravens P. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16(3):196–203.CrossRefPubMed
31.
go back to reference Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53:809–20.CrossRefPubMed Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53:809–20.CrossRefPubMed
32.
go back to reference Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen TP, Sander D, Plichart M, Catapano AL, Robertson CM, Kiechl S. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012;379(9831):2053–62.PubMedCentralCrossRefPubMed Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen TP, Sander D, Plichart M, Catapano AL, Robertson CM, Kiechl S. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012;379(9831):2053–62.PubMedCentralCrossRefPubMed
33.
go back to reference Libman IM, Miller KM, DiMeglio LA, Bethin KE, Katz ML, Shah A, Simmons JH, Haller MJ, Raman S, Tamborlane WV, Coffey JK. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015;314(21):2241–50.CrossRefPubMed Libman IM, Miller KM, DiMeglio LA, Bethin KE, Katz ML, Shah A, Simmons JH, Haller MJ, Raman S, Tamborlane WV, Coffey JK. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015;314(21):2241–50.CrossRefPubMed
34.
go back to reference Petrie JR, Chaturvedi N, Ford I, Brouwers MC, Greenlaw N, Tillin T, Hramiak I, Hughes AD, Jenkins AJ, Klein BE, Klein R. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609.PubMedCentralCrossRefPubMed Petrie JR, Chaturvedi N, Ford I, Brouwers MC, Greenlaw N, Tillin T, Hramiak I, Hughes AD, Jenkins AJ, Klein BE, Klein R. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609.PubMedCentralCrossRefPubMed
35.
go back to reference Polak JF, Szklo M, Kronmal RA, Burke GL, Shea S, Zavodni AE, O’Leary DH. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2(2):e000087.PubMedCentralCrossRefPubMed Polak JF, Szklo M, Kronmal RA, Burke GL, Shea S, Zavodni AE, O’Leary DH. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2(2):e000087.PubMedCentralCrossRefPubMed
36.
go back to reference Jablonski KA, McAteer JB, de Bakker PI, Franks PW, Pollin TI, Hanson RL, Saxena R, Fowler S, Shuldiner AR, Knowler WC, Altshuler D. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672–81.PubMedCentralCrossRefPubMed Jablonski KA, McAteer JB, de Bakker PI, Franks PW, Pollin TI, Hanson RL, Saxena R, Fowler S, Shuldiner AR, Knowler WC, Altshuler D. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672–81.PubMedCentralCrossRefPubMed
37.
go back to reference Pau CT, Cheang KI, Modi BP, Kasippillai T, Keefe CC, Shulleeta M, Evans WS, Pal L, Strauss JF III, Nestler JE, Welt CK. The role of variants regulating metformin transport and action in women with polycystic ovary syndrome. Pharmacogenomics. 2016;17(16):1765–73.CrossRefPubMed Pau CT, Cheang KI, Modi BP, Kasippillai T, Keefe CC, Shulleeta M, Evans WS, Pal L, Strauss JF III, Nestler JE, Welt CK. The role of variants regulating metformin transport and action in women with polycystic ovary syndrome. Pharmacogenomics. 2016;17(16):1765–73.CrossRefPubMed
38.
go back to reference Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, Steinkampf MP, Coutifaris C, McGovern PG, Cataldo NA, Gosman GG. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J Clin Endocrinol Metab. 2008;93(3):792–800.CrossRefPubMed Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, Steinkampf MP, Coutifaris C, McGovern PG, Cataldo NA, Gosman GG. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J Clin Endocrinol Metab. 2008;93(3):792–800.CrossRefPubMed
39.
go back to reference Schweighofer N, Lerchbaum E, Trummer O, Schwetz V, Pieber T, Obermayer-Pietsch B. Metformin resistance alleles in polycystic ovary syndrome: pattern and association with glucose metabolism. Pharmacogenomics. 2014;15(3):305–17.CrossRefPubMed Schweighofer N, Lerchbaum E, Trummer O, Schwetz V, Pieber T, Obermayer-Pietsch B. Metformin resistance alleles in polycystic ovary syndrome: pattern and association with glucose metabolism. Pharmacogenomics. 2014;15(3):305–17.CrossRefPubMed
41.
go back to reference Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, Clore JN, Blackard WG. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72(1):83–9.CrossRefPubMed Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, Clore JN, Blackard WG. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72(1):83–9.CrossRefPubMed
42.
go back to reference Hirsch A, Hahn D, Kempna P, Hofer G, Nuoffer JM, Mullis PE, Flück CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology. 2012;153(9):4354–66.CrossRefPubMed Hirsch A, Hahn D, Kempna P, Hofer G, Nuoffer JM, Mullis PE, Flück CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology. 2012;153(9):4354–66.CrossRefPubMed
43.
go back to reference Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2017;11(11):CD003053.PubMed Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2017;11(11):CD003053.PubMed
44.
go back to reference Balen AH, Morley LC, Misso M, Franks S, Legro RS, Wijeyaratne CN, Stener-Victorin E, Fauser BC, Norman RJ, Teede H. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016;22(6):687–708.CrossRefPubMed Balen AH, Morley LC, Misso M, Franks S, Legro RS, Wijeyaratne CN, Stener-Victorin E, Fauser BC, Norman RJ, Teede H. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016;22(6):687–708.CrossRefPubMed
45.
go back to reference Palomba S, Falbo A, Russo T, Manguso F, Tolino A, Zullo F, De Feo P, Orio F Jr. Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(8):3128–35.CrossRefPubMed Palomba S, Falbo A, Russo T, Manguso F, Tolino A, Zullo F, De Feo P, Orio F Jr. Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(8):3128–35.CrossRefPubMed
46.
go back to reference Pau CT, Keefe C, Duran J, Welt CK. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study. J Clin Endocrinol Metab. 2014;99(5):1870–8.PubMedCentralCrossRefPubMed Pau CT, Keefe C, Duran J, Welt CK. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study. J Clin Endocrinol Metab. 2014;99(5):1870–8.PubMedCentralCrossRefPubMed
47.
go back to reference Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum Reprod Update. 2015;21(5):560–74.CrossRefPubMed Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum Reprod Update. 2015;21(5):560–74.CrossRefPubMed
48.
go back to reference Rowan JA, Hague WM, Gao W, Battin MR, Moore MP. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med. 2008;358(19):2003–15.CrossRefPubMed Rowan JA, Hague WM, Gao W, Battin MR, Moore MP. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med. 2008;358(19):2003–15.CrossRefPubMed
49.
go back to reference Rowan JA, Rush EC, Obolonkin V, Battin M, Wouldes T, Hague WM. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU) body composition at 2 years of age. Diabetes Care. 2011;34(10):2279–84.PubMedCentralCrossRefPubMed Rowan JA, Rush EC, Obolonkin V, Battin M, Wouldes T, Hague WM. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU) body composition at 2 years of age. Diabetes Care. 2011;34(10):2279–84.PubMedCentralCrossRefPubMed
50.
go back to reference Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. BMJ. 2015;21:350. Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. BMJ. 2015;21:350.
51.
go back to reference • Tarry-Adkins JL, Aiken CE, Ozanne SE. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: a systematic review and meta-analysis. PLoS Med. 2019;16(8):e1002848. https://doi.org/10.1371/journal.pmed.1002848. This study analysed the impact of maternal metformin treatment on the trajectory of fetal, infant, and childhood growth. When it is used as a alternative to insulin for treatment of gestational diabetes mellitus (GDM).CrossRefPubMedCentralPubMed • Tarry-Adkins JL, Aiken CE, Ozanne SE. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: a systematic review and meta-analysis. PLoS Med. 2019;16(8):e1002848. https://​doi.​org/​10.​1371/​journal.​pmed.​1002848. This study analysed the impact of maternal metformin treatment on the trajectory of fetal, infant, and childhood growth. When it is used as a alternative to insulin for treatment of gestational diabetes mellitus (GDM).CrossRefPubMedCentralPubMed
52.
go back to reference Dodd JM, Louise J, Deussen AR, Grivell RM, Dekker G, McPhee AJ. Effect of metformin in addition to dietary and lifestyle advice for pregnant women who are overweight or obese: the GRoW randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(1):15–24.CrossRefPubMed Dodd JM, Louise J, Deussen AR, Grivell RM, Dekker G, McPhee AJ. Effect of metformin in addition to dietary and lifestyle advice for pregnant women who are overweight or obese: the GRoW randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(1):15–24.CrossRefPubMed
53.
go back to reference Chiswick C, Reynolds RM, Denison F, Drake AJ, Forbes S, Newby DE, Walker BR, Quenby S, Wray S, Weeks A, Lashen H. Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(10):778–86.PubMedCentralCrossRefPubMed Chiswick C, Reynolds RM, Denison F, Drake AJ, Forbes S, Newby DE, Walker BR, Quenby S, Wray S, Weeks A, Lashen H. Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(10):778–86.PubMedCentralCrossRefPubMed
54.
go back to reference Syngelaki A, Nicolaides KH, Balani J, Hyer S, Akolekar R, Kotecha R, Pastides A, Shehata H. Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med. 2016;374(5):434–43.CrossRefPubMed Syngelaki A, Nicolaides KH, Balani J, Hyer S, Akolekar R, Kotecha R, Pastides A, Shehata H. Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med. 2016;374(5):434–43.CrossRefPubMed
55.
go back to reference Gardiner SJ, Kirkpatrick CM, Begg EJ, Zhang M, Moore MP, Saville DJ. Transfer of metformin into human milk. Clin Pharmacol Ther. 2003;73(1):71–7.CrossRefPubMed Gardiner SJ, Kirkpatrick CM, Begg EJ, Zhang M, Moore MP, Saville DJ. Transfer of metformin into human milk. Clin Pharmacol Ther. 2003;73(1):71–7.CrossRefPubMed
56.
go back to reference Zhang K, Yang W, Dai H, Deng Z. Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: results from a meta-analysis. Diabetes Res Clin Pract. 2020;1(160):108001.CrossRef Zhang K, Yang W, Dai H, Deng Z. Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: results from a meta-analysis. Diabetes Res Clin Pract. 2020;1(160):108001.CrossRef
57.
go back to reference Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):1–6.CrossRef Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):1–6.CrossRef
58.
go back to reference Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: a review of potential mechanisms and therapeutic utility beyond diabetes. Drug Des Dev Ther. 2023;31:1907–32.CrossRef Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: a review of potential mechanisms and therapeutic utility beyond diabetes. Drug Des Dev Ther. 2023;31:1907–32.CrossRef
59.
go back to reference • Kheniser KG, Kashyap SR, Kasumov T. A systematic review: the appraisal of the effects of metformin on lipoprotein modification and function. Obes Sci Pract. 2019;5(1):36–45. https://doi.org/10.1002/osp4.309. It is the first review on the effects of metformin on lipoprotein metabolism (high-density lipoprotein (HDL) and low-density lipoprotein (LDL).)CrossRefPubMedCentralPubMed • Kheniser KG, Kashyap SR, Kasumov T. A systematic review: the appraisal of the effects of metformin on lipoprotein modification and function. Obes Sci Pract. 2019;5(1):36–45. https://​doi.​org/​10.​1002/​osp4.​309. It is the first review on the effects of metformin on lipoprotein metabolism (high-density lipoprotein (HDL) and low-density lipoprotein (LDL).)CrossRefPubMedCentralPubMed
60.
go back to reference Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis. 2009;206(2):434–8.CrossRefPubMed Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis. 2009;206(2):434–8.CrossRefPubMed
62.
go back to reference Wang XF, Zhang JY, Li L, Zhao XY, Tao HL, Zhang L. Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol. 2011;38(2):94–101.CrossRefPubMed Wang XF, Zhang JY, Li L, Zhao XY, Tao HL, Zhang L. Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol. 2011;38(2):94–101.CrossRefPubMed
63.
go back to reference Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JS, Gandy SJ, Baig F, Hussain MS, Bhalraam U, Khan F, Choy AM. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409–17.PubMedCentralCrossRefPubMed Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JS, Gandy SJ, Baig F, Hussain MS, Bhalraam U, Khan F, Choy AM. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40(41):3409–17.PubMedCentralCrossRefPubMed
64.
go back to reference Su C, Li X, Yang Y, Du Y, Zhang X, Wang L, Hong B. Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutr Diabetes. 2021;11(1):27.PubMedCentralCrossRefPubMed Su C, Li X, Yang Y, Du Y, Zhang X, Wang L, Hong B. Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutr Diabetes. 2021;11(1):27.PubMedCentralCrossRefPubMed
65.
go back to reference Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.CrossRefPubMed Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.CrossRefPubMed
66.
go back to reference • Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER III, Appel LJ, Yeh HC. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care. 2021;44(7):1462–71. https://doi.org/10.2337/dc20-2257. It is a 3-parallel-arm, randomized control trial to determine the longer-term effects of metformin treatment and behavioral weight loss on gut microbiota and short-chain fatty acids (SCFAs).CrossRefPubMedCentralPubMed • Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER III, Appel LJ, Yeh HC. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care. 2021;44(7):1462–71. https://​doi.​org/​10.​2337/​dc20-2257. It is a 3-parallel-arm, randomized control trial to determine the longer-term effects of metformin treatment and behavioral weight loss on gut microbiota and short-chain fatty acids (SCFAs).CrossRefPubMedCentralPubMed
67.
go back to reference De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.CrossRefPubMed De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.CrossRefPubMed
68.
go back to reference Zhou ZY, Ren LW, Zhan P, Yang HY, Chai DD, Yu ZW. Metformin exerts glucose-lowering action in high-fat-fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol Sin. 2016;37(8):1063–75.PubMedCentralCrossRefPubMed Zhou ZY, Ren LW, Zhan P, Yang HY, Chai DD, Yu ZW. Metformin exerts glucose-lowering action in high-fat-fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol Sin. 2016;37(8):1063–75.PubMedCentralCrossRefPubMed
69.
go back to reference Ahmadi S, Razazan A, Nagpal R, Jain S, Wang BO, Mishra SP, Wang S, Justice J, Ding J, McClain DA, Kritchevsky SB. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J Gerontol: Series A. 2020;75(7):e9-21.CrossRef Ahmadi S, Razazan A, Nagpal R, Jain S, Wang BO, Mishra SP, Wang S, Justice J, Ding J, McClain DA, Kritchevsky SB. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J Gerontol: Series A. 2020;75(7):e9-21.CrossRef
70.
go back to reference Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schonbeck U, Libby P. Metformin inhibits pro-inflammatory responses and nuclear factor-κB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26(3):611–7.CrossRefPubMed Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schonbeck U, Libby P. Metformin inhibits pro-inflammatory responses and nuclear factor-κB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26(3):611–7.CrossRefPubMed
72.
go back to reference •• Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol. 2021;12:718942. https://doi.org/10.3389/fendo.2021.718942. This review summarizes till date published evidence that argues for, or against, an anti-aging effect of metformin. •• Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol. 2021;12:718942. https://​doi.​org/​10.​3389/​fendo.​2021.​718942. This review summarizes till date published evidence that argues for, or against, an anti-aging effect of metformin.
74.
go back to reference Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated anti-tumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci. 2015;112(6):1809–14.PubMedCentralCrossRefPubMed Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated anti-tumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci. 2015;112(6):1809–14.PubMedCentralCrossRefPubMed
75.
go back to reference Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, Viollet B. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–65.PubMedCentralCrossRefPubMed Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, Viollet B. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–65.PubMedCentralCrossRefPubMed
76.
go back to reference Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci. 2013;110(3):972–7.CrossRefPubMed Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci. 2013;110(3):972–7.CrossRefPubMed
77.
go back to reference Reis G, Silva EA, Silva DC, Thabane L, Milagres AC, Ferreira TS, Dos Santos CV, Campos VH, Nogueira AM, de Almeida AP, Callegari ED. Effect of early treatment with ivermectin among patients with Covid-19. N Engl J Med. 2022;386(18):1721–31.CrossRefPubMed Reis G, Silva EA, Silva DC, Thabane L, Milagres AC, Ferreira TS, Dos Santos CV, Campos VH, Nogueira AM, de Almeida AP, Callegari ED. Effect of early treatment with ivermectin among patients with Covid-19. N Engl J Med. 2022;386(18):1721–31.CrossRefPubMed
78.
go back to reference •• Bramante CT, Huling JD, Tignanelli CJ, Buse JB, Liebovitz DM, Nicklas JM, Cohen K, Puskarich MA, Belani HK, Proper JL, Siegel LK. Randomized trial of metformin, ivermectin, and fluvoxamine for Covid-19. New England J Med. 2022;387(7):599–610. https://doi.org/10.1056/NEJMoa2201662. This is a phase 3, double-blind, randomized, placebo-controlled trial, to test the effectiveness of metformin in preventing serious SARS-CoV-2 infection in nonhospitalized adults after a confirmed diagnosis of infection.CrossRef •• Bramante CT, Huling JD, Tignanelli CJ, Buse JB, Liebovitz DM, Nicklas JM, Cohen K, Puskarich MA, Belani HK, Proper JL, Siegel LK. Randomized trial of metformin, ivermectin, and fluvoxamine for Covid-19. New England J Med. 2022;387(7):599–610. https://​doi.​org/​10.​1056/​NEJMoa2201662. This is a phase 3, double-blind, randomized, placebo-controlled trial, to test the effectiveness of metformin in preventing serious SARS-CoV-2 infection in nonhospitalized adults after a confirmed diagnosis of infection.CrossRef
79.
go back to reference Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther. 2010;9(5):1092–9.CrossRefPubMed Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther. 2010;9(5):1092–9.CrossRefPubMed
80.
go back to reference Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe R, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10(23):4047–64.PubMedCentralCrossRefPubMed Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe R, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10(23):4047–64.PubMedCentralCrossRefPubMed
81.
go back to reference Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. 2013;32(12):1475–87.CrossRefPubMed Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. 2013;32(12):1475–87.CrossRefPubMed
82.
go back to reference Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, Chen S, Wang G, Lin P, Chen H, Yeung SC. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin Cancer Res. 2020;26(18):4921–32.CrossRefPubMed Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, Chen S, Wang G, Lin P, Chen H, Yeung SC. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin Cancer Res. 2020;26(18):4921–32.CrossRefPubMed
84.
go back to reference Cusi K, Consoli A, Defronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81(11):4059–67.PubMed Cusi K, Consoli A, Defronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81(11):4059–67.PubMed
85.
go back to reference Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 2009;8(13):2005–13.CrossRefPubMed Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 2009;8(13):2005–13.CrossRefPubMed
86.
go back to reference •• Aung M, Amin S, Gulraiz A, Gandhi FR, Escobar JA, Malik BH, Gandhi F. The future of metformin in the prevention of diabetes-related osteoporosis. Cureus. 2020;12(9):e10412. https://doi.org/10.7759/cureus.10412. This article demonstrates that metformin influences the bone homeostasis by its stimulatory effect on the AMPK pathway leading to reduction in the occurrence of Osteoporosis. •• Aung M, Amin S, Gulraiz A, Gandhi FR, Escobar JA, Malik BH, Gandhi F. The future of metformin in the prevention of diabetes-related osteoporosis. Cureus. 2020;12(9):e10412. https://​doi.​org/​10.​7759/​cureus.​10412. This article demonstrates that metformin influences the bone homeostasis by its stimulatory effect on the AMPK pathway leading to reduction in the occurrence of Osteoporosis.
87.
go back to reference Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on anti-tumor mechanisms and clinical development. Target Oncol. 2016;11:447–67.CrossRefPubMed Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on anti-tumor mechanisms and clinical development. Target Oncol. 2016;11:447–67.CrossRefPubMed
88.
go back to reference Chevalier B, Pasquier D, Lartigau EF, Chargari C, Schernberg A, Jannin A, Mirabel X, Vantyghem MC, Escande A. Metformin:(future) best friend of the radiation oncologist? Radiother Oncol. 2020;1(151):95–105.CrossRef Chevalier B, Pasquier D, Lartigau EF, Chargari C, Schernberg A, Jannin A, Mirabel X, Vantyghem MC, Escande A. Metformin:(future) best friend of the radiation oncologist? Radiother Oncol. 2020;1(151):95–105.CrossRef
89.
go back to reference Onken B, Driscoll M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PloS one. 2010;5(1):e8758.PubMedCentralCrossRefPubMed Onken B, Driscoll M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PloS one. 2010;5(1):e8758.PubMedCentralCrossRefPubMed
Metadata
Title
Metformin: Past, Present, and Future
Authors
Sandeep Chaudhary
Amitabh Kulkarni
Publication date
03-04-2024
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 6/2024
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-024-01539-1
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.