Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Metformin | Research

Exosomes biogenesis was increased in metformin-treated human ovary cancer cells; possibly to mediate resistance

Authors: Reza Abbasi, Vahid Nejati, Jafar Rezaie

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Background

Exosomes derived from tumor cells contribute to the pathogenesis of cancers. Metformin, the most usually used drug for type 2 diabetes, has been frequently investigated for anticancer effects. Here, we examined whether metformin affects exosomes signaling in human ovary cancer cells in vitro.

Methods

Human ovary cancer cells, including A2780 and Skov3 cells, were treated with metformin for either 24–48 h. Cell viability and caspase-3 activity were determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and colorimetric assays respectively. Oil-Red-O staining and in vitro, scratch assays were used to examine cellular toxicity and wound healing rate. After treatment with metformin, exosomes were isolated from cells and quantified by acetylcholinesterase (AChE) assay, Dynamic Light Scattering (DLS), and their markers. Genes related to exosomes signaling were analyzed by real-time PCR or western blotting.

Results

Our results showed that metformin decreased the viability of both cells dose/time-dependently (P < 0.05). Metformin increased the activity of caspase-3 (P < 0.05) as well as the number of Oil-Red-O positive cells in both cell lines. In vitro scratch assay showed that the cell migration rate of metformin-treated cells was decreased (P < 0.05), whereas AChE activity of exosomes from metformin-treated cells was increased (P < 0.05). Concurrent with an increase in CD63 protein levels, expression of Alix, CD63, CD81, Lamp-2, and Rab27b up-regulated in treated cells (P < 0.05).

Conclusion

Results indicated that metformin had a cytotoxic effect on ovary cancer cells and enhanced exosome biogenesis and secretion.
Literature
2.
go back to reference Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H. Skvortsova I-I: therapy resistance mediated by exosomes. Mol Cancer. 2019;18(1):1–11.CrossRef Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H. Skvortsova I-I: therapy resistance mediated by exosomes. Mol Cancer. 2019;18(1):1–11.CrossRef
3.
go back to reference Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 2020;128:110237.PubMedCrossRef Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 2020;128:110237.PubMedCrossRef
4.
go back to reference Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2014;1846(1):75–87.CrossRef Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2014;1846(1):75–87.CrossRef
5.
go back to reference Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L. Ahmadi Jouybari T: the emerging role of exosomal miRNAs as biomarkers for early Cancer detection: a Comprehensive Literature Review. Technol Cancer Res Treat. 2023;22:15330338231205999.PubMedPubMedCentralCrossRef Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L. Ahmadi Jouybari T: the emerging role of exosomal miRNAs as biomarkers for early Cancer detection: a Comprehensive Literature Review. Technol Cancer Res Treat. 2023;22:15330338231205999.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer. 2019;144(7):1486–95.PubMedCrossRef Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer. 2019;144(7):1486–95.PubMedCrossRef
8.
go back to reference Beach A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 2014;7:1–11.CrossRef Beach A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 2014;7:1–11.CrossRef
9.
go back to reference Shenoy GN, Loyall J, Berenson CS, Kelleher RJ Jr., Iyer V, Balu-Iyer SV, Odunsi K, Bankert RB. Sialic acid–dependent inhibition of T cells by Exosomal Ganglioside GD3 in ovarian tumor microenvironments. J Immunol. 2018;201(12):3750–8.PubMedCrossRef Shenoy GN, Loyall J, Berenson CS, Kelleher RJ Jr., Iyer V, Balu-Iyer SV, Odunsi K, Bankert RB. Sialic acid–dependent inhibition of T cells by Exosomal Ganglioside GD3 in ovarian tumor microenvironments. J Immunol. 2018;201(12):3750–8.PubMedCrossRef
10.
go back to reference Gutwein P, Stoeck A, Riedle S, Gast D, Runz S, Condon TP, Marmé A, Phong M-C, Linderkamp O, Skorokhod A, et al. Cleavage of L1 in Exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res. 2005;11(7):2492–501.PubMedCrossRef Gutwein P, Stoeck A, Riedle S, Gast D, Runz S, Condon TP, Marmé A, Phong M-C, Linderkamp O, Skorokhod A, et al. Cleavage of L1 in Exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res. 2005;11(7):2492–501.PubMedCrossRef
11.
go back to reference Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P, D’Souza-Schorey C. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun. 2015;6(1):6919.PubMedCrossRef Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P, D’Souza-Schorey C. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun. 2015;6(1):6919.PubMedCrossRef
12.
go back to reference Ledermann J, Raja F, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24:vi24–32.PubMedCrossRef Ledermann J, Raja F, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24:vi24–32.PubMedCrossRef
13.
go back to reference Li Y, Chen Z-K, Duan X, Zhang H-J, Xiao B-L, Wang K-M, Chen G. Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med. 2022;54(9):1379–89.PubMedPubMedCentralCrossRef Li Y, Chen Z-K, Duan X, Zhang H-J, Xiao B-L, Wang K-M, Chen G. Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med. 2022;54(9):1379–89.PubMedPubMedCentralCrossRef
14.
go back to reference Mazurek M, Litak J, Kamieniak P, Kulesza B, Jonak K, Baj J, Grochowski C. Metformin as potential therapy for high-grade glioma. Cancers. 2020;12(1):210.PubMedPubMedCentralCrossRef Mazurek M, Litak J, Kamieniak P, Kulesza B, Jonak K, Baj J, Grochowski C. Metformin as potential therapy for high-grade glioma. Cancers. 2020;12(1):210.PubMedPubMedCentralCrossRef
15.
go back to reference Shao S, Zhao L, An G, Zhang L, Jing X, Luo M, Li W, Meng D, Ning Q, Zhao X. Metformin suppresses HIF-1α expression in cancer‐associated fibroblasts to prevent tumor‐stromal cross talk in breast cancer. FASEB J. 2020;34(8):10860–70.PubMedCrossRef Shao S, Zhao L, An G, Zhang L, Jing X, Luo M, Li W, Meng D, Ning Q, Zhao X. Metformin suppresses HIF-1α expression in cancer‐associated fibroblasts to prevent tumor‐stromal cross talk in breast cancer. FASEB J. 2020;34(8):10860–70.PubMedCrossRef
16.
go back to reference Kim H-S, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim J-a. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep. 2020;10(1):13523.PubMedPubMedCentralCrossRef Kim H-S, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim J-a. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep. 2020;10(1):13523.PubMedPubMedCentralCrossRef
17.
go back to reference Kurelac I, Ganesh NU, Iorio M, Porcelli AM, Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Seminars in cell & developmental biology: 2020. Elsevier; 2020. pp. 90–7. Kurelac I, Ganesh NU, Iorio M, Porcelli AM, Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Seminars in cell & developmental biology: 2020. Elsevier; 2020. pp. 90–7.
18.
go back to reference Tang G, Guo J, Zhu Y, Huang Z, Liu T, Cai J, Yu L, Wang Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int J Oncol. 2018;52(6):1899–911.PubMedPubMedCentral Tang G, Guo J, Zhu Y, Huang Z, Liu T, Cai J, Yu L, Wang Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int J Oncol. 2018;52(6):1899–911.PubMedPubMedCentral
19.
go back to reference Yang X, Huang M, Zhang Q, Chen J, Li J, Han Q, Zhang L, Li J, Liu S, Ma Y. Metformin antagonizes ovarian cancer cells malignancy through MSLN mediated IL-6/STAT3 signaling. Cell Transplant. 2021;30:09636897211027819.PubMedPubMedCentralCrossRef Yang X, Huang M, Zhang Q, Chen J, Li J, Han Q, Zhang L, Li J, Liu S, Ma Y. Metformin antagonizes ovarian cancer cells malignancy through MSLN mediated IL-6/STAT3 signaling. Cell Transplant. 2021;30:09636897211027819.PubMedPubMedCentralCrossRef
20.
go back to reference Mahbubfam S, Rezaie J, Nejati V. Crosstalk between exosomes signaling pathway and autophagy flux in senescent human endothelial cells. Tissue Cell. 2022;76:101803.PubMedCrossRef Mahbubfam S, Rezaie J, Nejati V. Crosstalk between exosomes signaling pathway and autophagy flux in senescent human endothelial cells. Tissue Cell. 2022;76:101803.PubMedCrossRef
21.
22.
go back to reference Patel S, Singh N, Kumar L. Evaluation of effects of metformin in primary ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16(16):6973–9.PubMedCrossRef Patel S, Singh N, Kumar L. Evaluation of effects of metformin in primary ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16(16):6973–9.PubMedCrossRef
23.
go back to reference Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, Buckanovich RJ. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127(2):390–7.PubMedPubMedCentralCrossRef Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, Buckanovich RJ. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127(2):390–7.PubMedPubMedCentralCrossRef
24.
go back to reference Hadad S, Hardie D, Appleyard V, Thompson A. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16:746–52.PubMedCrossRef Hadad S, Hardie D, Appleyard V, Thompson A. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16:746–52.PubMedCrossRef
25.
go back to reference Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocrine-related Cancer. 2010;17(2):351.PubMedCrossRef Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocrine-related Cancer. 2010;17(2):351.PubMedCrossRef
26.
go back to reference Huo J, Bian X, Huang Y, Miao Z, Song L. Inhibitory effect and mechanism of metformin on human ovarian cancer cells SKOV-3 and A2780. Eur Rev Med Pharmacol Sci. 2017;21(03):484–9.PubMed Huo J, Bian X, Huang Y, Miao Z, Song L. Inhibitory effect and mechanism of metformin on human ovarian cancer cells SKOV-3 and A2780. Eur Rev Med Pharmacol Sci. 2017;21(03):484–9.PubMed
28.
29.
go back to reference Mogavero A, Maiorana MV, Zanutto S, Varinelli L, Bozzi F, Belfiore A, Volpi CC, Gloghini A, Pierotti MA, Gariboldi M. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci Rep. 2017;7(1):15992.PubMedPubMedCentralCrossRef Mogavero A, Maiorana MV, Zanutto S, Varinelli L, Bozzi F, Belfiore A, Volpi CC, Gloghini A, Pierotti MA, Gariboldi M. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci Rep. 2017;7(1):15992.PubMedPubMedCentralCrossRef
30.
go back to reference Zou G, Bai J, Li D, Chen Y. Effect of metformin on the proliferation, apoptosis, invasion and autophagy of ovarian cancer cells. Experimental Therapeutic Med. 2019;18(3):2086–94. Zou G, Bai J, Li D, Chen Y. Effect of metformin on the proliferation, apoptosis, invasion and autophagy of ovarian cancer cells. Experimental Therapeutic Med. 2019;18(3):2086–94.
31.
go back to reference Rattan R, Giri S, Hartmann L, Shridhar V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med. 2011;15(1):166–78.PubMedCrossRef Rattan R, Giri S, Hartmann L, Shridhar V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med. 2011;15(1):166–78.PubMedCrossRef
32.
go back to reference Yao H-R, Liu J, Plumeri D, Cao Y-B, He T, Lin L, Li Y, Jiang Y-Y, Li J, Shang J. Lipotoxicity in HepG2 cells triggered by free fatty acids. Am J Translational Res. 2011;3(3):284. Yao H-R, Liu J, Plumeri D, Cao Y-B, He T, Lin L, Li Y, Jiang Y-Y, Li J, Shang J. Lipotoxicity in HepG2 cells triggered by free fatty acids. Am J Translational Res. 2011;3(3):284.
33.
go back to reference Qiang P, Shao Y, Sun Y-P, Zhang J, Chen L-J. Metformin inhibits proliferation and migration of endometrial cancer cells through regulating PI3K/AKT/MDM2 pathway. Eur Rev Med Pharmacol Sci 2019, 23(4). Qiang P, Shao Y, Sun Y-P, Zhang J, Chen L-J. Metformin inhibits proliferation and migration of endometrial cancer cells through regulating PI3K/AKT/MDM2 pathway. Eur Rev Med Pharmacol Sci 2019, 23(4).
34.
go back to reference Chen X, Li C, He T, Mao J, Li C, Lyu J, Meng QH. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression. Cancer Biol Ther. 2016;17(5):507–14.PubMedPubMedCentralCrossRef Chen X, Li C, He T, Mao J, Li C, Lyu J, Meng QH. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression. Cancer Biol Ther. 2016;17(5):507–14.PubMedPubMedCentralCrossRef
35.
go back to reference Son TX, Huyen NTB, Saimuang K, Prachayasittikul V, On WC. Metformin inhibits migration and invasion of cholangiocarcinoma cells. Asian Pac J cancer Prevention: APJCP. 2017;18(2):473. Son TX, Huyen NTB, Saimuang K, Prachayasittikul V, On WC. Metformin inhibits migration and invasion of cholangiocarcinoma cells. Asian Pac J cancer Prevention: APJCP. 2017;18(2):473.
36.
go back to reference Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, Usui A, Suito H, Takahashi M, Otsuka R. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43.PubMedPubMedCentralCrossRef Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, Usui A, Suito H, Takahashi M, Otsuka R. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43.PubMedPubMedCentralCrossRef
37.
go back to reference Soraya H, Sani NA, Jabbari N, Rezaie J. Metformin increases exosome biogenesis and secretion in U87 MG human glioblastoma cells: a possible mechanism of therapeutic resistance. Arch Med Res. 2021;52(2):151–62.PubMedCrossRef Soraya H, Sani NA, Jabbari N, Rezaie J. Metformin increases exosome biogenesis and secretion in U87 MG human glioblastoma cells: a possible mechanism of therapeutic resistance. Arch Med Res. 2021;52(2):151–62.PubMedCrossRef
38.
go back to reference Mathieu M, Névo N, Jouve M, Valenzuela JI, Maurin M, Verweij FJ, Palmulli R, Lankar D, Dingli F, Loew D. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12(1):4389.PubMedPubMedCentralCrossRef Mathieu M, Névo N, Jouve M, Valenzuela JI, Maurin M, Verweij FJ, Palmulli R, Lankar D, Dingli F, Loew D. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12(1):4389.PubMedPubMedCentralCrossRef
39.
go back to reference Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.PubMedCrossRef Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.PubMedCrossRef
40.
go back to reference Liao Z, Li S, Lu S, Liu H, Li G, Ma L, Luo R, Ke W, Wang B, Xiang Q. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials. 2021;274:120850.PubMedCrossRef Liao Z, Li S, Lu S, Liu H, Li G, Ma L, Luo R, Ke W, Wang B, Xiang Q. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials. 2021;274:120850.PubMedCrossRef
41.
go back to reference Feng F, Zhang J, Fan X, Yuan F, Jiang Y, Lv R, Ma Y. Downregulation of Rab27A contributes to metformin–induced suppression of breast cancer stem cells. Oncol Lett. 2017;14(3):2947–53.PubMedPubMedCentralCrossRef Feng F, Zhang J, Fan X, Yuan F, Jiang Y, Lv R, Ma Y. Downregulation of Rab27A contributes to metformin–induced suppression of breast cancer stem cells. Oncol Lett. 2017;14(3):2947–53.PubMedPubMedCentralCrossRef
42.
go back to reference Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of Tumor Cell-derived Exosomes*♦. J Biol Chem. 2013;288(14):10093–9.PubMedPubMedCentralCrossRef Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of Tumor Cell-derived Exosomes*♦. J Biol Chem. 2013;288(14):10093–9.PubMedPubMedCentralCrossRef
43.
go back to reference Ramani VC, Vlodavsky I, Ng M, Zhang Y, Barbieri P, Noseda A, Sanderson RD. Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biol. 2016;55:22–34.PubMedPubMedCentralCrossRef Ramani VC, Vlodavsky I, Ng M, Zhang Y, Barbieri P, Noseda A, Sanderson RD. Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biol. 2016;55:22–34.PubMedPubMedCentralCrossRef
44.
go back to reference Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, Mobley JA, Zhang Y, Brown EE, Vlodavsky I. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.PubMedCrossRef Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, Mobley JA, Zhang Y, Brown EE, Vlodavsky I. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.PubMedCrossRef
45.
go back to reference Baixauli F, López-Otín C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403.PubMedPubMedCentralCrossRef Baixauli F, López-Otín C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403.PubMedPubMedCentralCrossRef
46.
go back to reference Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The footprint of exosomes in the radiation-induced bystander effects. Bioengineering. 2022;9(6):243.PubMedPubMedCentralCrossRef Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The footprint of exosomes in the radiation-induced bystander effects. Bioengineering. 2022;9(6):243.PubMedPubMedCentralCrossRef
Metadata
Title
Exosomes biogenesis was increased in metformin-treated human ovary cancer cells; possibly to mediate resistance
Authors
Reza Abbasi
Vahid Nejati
Jafar Rezaie
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Metformin
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03312-6

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine