Skip to main content
Top
Published in: International Journal of Clinical Pharmacy 2/2019

01-04-2019 | Metformin | Research Article

Effects of sarpogrelate on microvascular complications with type 2 diabetes

Authors: Hyunju Yoo, Inwhee Park, Dae Jung Kim, Sukhyang Lee

Published in: International Journal of Clinical Pharmacy | Issue 2/2019

Login to get access

Abstract

Background Diabetes is a major cause of microvascular complications. Renin–angiotensin–aldosterone blockers have been known to have the benefits of delaying onset and progression of diabetic complications including nephropathy. Objective To evaluate the effect of sarpogrelate, an antiplatelet agent, on the new onset diabetic complications in patients with type 2 diabetes mellitus. Setting A 1108-bed tertiary university hospital in Korea. Methods A retrospective cohort study was conducted using electronic medical records between 2010 and 2015 in Korea. The study cohort of the propensity score matched patients with or without sarpogrelate was evaluated for the diabetic complications identified with the diagnosis codes in T2DM patients on the metformin based antidiabetic therapy. Nephropathy was further evaluated for progression of kidney function. Main outcome measure The incidence of composite microvascular complications included nephropathy, neuropathy, and retinopathy. Results The 1:2 propensity score matched 478 out of 14,440 patients were included in the final analysis with or without sarpogrelate (162 vs. 316 patients). The incidence of nephropathy, neuropathy, and retinopathy was 1.23% versus 5.38% (HR 0.21, 95% CI 0.05–0.92), 1.23% versus 4.43% (HR 0.26, 95% CI 0.06–1.14), and 6.17% versus 6.33% (HR 0.93, 95% CI 0.43–1.97) with sarpogrelate and without sarpogrelate, respectively. Changes in the estimated glomerular filtration rate and urine albumin creatinine ratio were not significantly different between the groups. Conclusion In Korean patients, sarpogrelate, an antiplatelet agent, was associated with reducing the incidence and progression of nephropathyin type 2 diabetes, but not associated with the composite endpoints including neuropathy and retinopathy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRefPubMed Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRefPubMed
2.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRefPubMed Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRefPubMed
3.
go back to reference American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S86–104.CrossRef American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S86–104.CrossRef
4.
go back to reference Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care. 2008;14:15–23.PubMedPubMedCentral Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care. 2008;14:15–23.PubMedPubMedCentral
5.
go back to reference Hex N, Bartlett C, Wright D, Taylor M, Varley D. Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabetic Med. 2012;29:855–62.CrossRefPubMed Hex N, Bartlett C, Wright D, Taylor M, Varley D. Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabetic Med. 2012;29:855–62.CrossRefPubMed
6.
go back to reference Yoon J, Oh I, Seo H, Kim E, Gong Y, Ock M, et al. Disability-adjusted life years for 313 diseases and injuries: the 2012 Korean burden of disease study. J Korean Med Sci. 2016;31:S146–57.CrossRefPubMedPubMedCentral Yoon J, Oh I, Seo H, Kim E, Gong Y, Ock M, et al. Disability-adjusted life years for 313 diseases and injuries: the 2012 Korean burden of disease study. J Korean Med Sci. 2016;31:S146–57.CrossRefPubMedPubMedCentral
7.
8.
go back to reference American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S105–18.CrossRef American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S105–18.CrossRef
9.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998;352:837–53.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998;352:837–53.CrossRef
10.
go back to reference Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef
11.
go back to reference Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. The Lancet. 2010;376:419–30.CrossRef Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. The Lancet. 2010;376:419–30.CrossRef
12.
go back to reference ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRef ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRef
13.
go back to reference Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.CrossRefPubMed Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.CrossRefPubMed
14.
go back to reference Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRefPubMed Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRefPubMed
15.
go back to reference Mann JF, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48.CrossRefPubMed Mann JF, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48.CrossRefPubMed
16.
go back to reference Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefPubMed Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefPubMed
17.
go back to reference Katayama S, Yamada D, Nakayama M, Yamada T, Myoishi M, Kato M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complicat. 2017;31:758–65.CrossRef Katayama S, Yamada D, Nakayama M, Yamada T, Myoishi M, Kato M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complicat. 2017;31:758–65.CrossRef
18.
go back to reference Lee D, Chun EJ, Hur JH, Min SH, Lee J, Oh TJ, et al. Effect of sarpogrelate, a selective 5-HT 2A receptor antagonist, on characteristics of coronary artery disease in patients with type 2 diabetes. Atherosclerosis. 2017;257:47–54.CrossRefPubMed Lee D, Chun EJ, Hur JH, Min SH, Lee J, Oh TJ, et al. Effect of sarpogrelate, a selective 5-HT 2A receptor antagonist, on characteristics of coronary artery disease in patients with type 2 diabetes. Atherosclerosis. 2017;257:47–54.CrossRefPubMed
19.
go back to reference Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, Higashi K, et al. Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract. 2002;58:123–9.CrossRefPubMed Takahashi T, Yano M, Minami J, Haraguchi T, Koga N, Higashi K, et al. Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy. Diabetes Res Clin Pract. 2002;58:123–9.CrossRefPubMed
20.
go back to reference Hamasaki Y, Doi K, Maeda-Mamiya R, Ogasawara E, Katagiri D, Tanaka T, et al. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Renal Physiol. 2013;305:F1796–803.CrossRefPubMed Hamasaki Y, Doi K, Maeda-Mamiya R, Ogasawara E, Katagiri D, Tanaka T, et al. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Renal Physiol. 2013;305:F1796–803.CrossRefPubMed
21.
go back to reference Lee ES, Lee MY, Kwon M, Kim HM, Kang JS, Kim YM, et al. Sarpogrelate hydrochloride ameliorates diabetic nephropathy associated with inhibition of macrophage activity and inflammatory reaction in db/db mice. PLoS ONE. 2017;12:e0179221.CrossRefPubMedPubMedCentral Lee ES, Lee MY, Kwon M, Kim HM, Kang JS, Kim YM, et al. Sarpogrelate hydrochloride ameliorates diabetic nephropathy associated with inhibition of macrophage activity and inflammatory reaction in db/db mice. PLoS ONE. 2017;12:e0179221.CrossRefPubMedPubMedCentral
22.
go back to reference Rosansky SJ, Glassock RJ. Is a decline in estimated GFR an appropriate surrogate end point for renoprotection drug trials? Kidney Int. 2014;85:723–7.CrossRefPubMed Rosansky SJ, Glassock RJ. Is a decline in estimated GFR an appropriate surrogate end point for renoprotection drug trials? Kidney Int. 2014;85:723–7.CrossRefPubMed
23.
go back to reference Stevens LA, Greene T, Levey AS. Surrogate end points for clinical trials of kidney disease progression. Clin J Am Soc Nephrol. 2006;1:874–84.CrossRefPubMed Stevens LA, Greene T, Levey AS. Surrogate end points for clinical trials of kidney disease progression. Clin J Am Soc Nephrol. 2006;1:874–84.CrossRefPubMed
24.
go back to reference Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–64.CrossRefPubMedPubMedCentral Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–64.CrossRefPubMedPubMedCentral
25.
go back to reference Investigators Gusto. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329:673–82.CrossRef Investigators Gusto. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329:673–82.CrossRef
26.
go back to reference American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S55–64.CrossRef American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S55–64.CrossRef
27.
go back to reference Kleinbaum DG, Klein M. Survival analysis. Berlin: Springer; 2010. Kleinbaum DG, Klein M. Survival analysis. Berlin: Springer; 2010.
28.
go back to reference Lin D, Wei L, Ying Z. Model-checking techniques based on cumulative residuals. Biometrics. 2002;58:1–12.CrossRefPubMed Lin D, Wei L, Ying Z. Model-checking techniques based on cumulative residuals. Biometrics. 2002;58:1–12.CrossRefPubMed
29.
go back to reference Anonymous Standards of Medical Care in Diabetes-2018. Diabetes Care January 01 2018;41:s1. Anonymous Standards of Medical Care in Diabetes-2018. Diabetes Care January 01 2018;41:s1.
30.
go back to reference de Boer IH, Afkarian M, Rue TC, Cleary PA, Lachin JM, Molitch ME, et al. Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol. 2014;25:2342–50.CrossRefPubMedPubMedCentral de Boer IH, Afkarian M, Rue TC, Cleary PA, Lachin JM, Molitch ME, et al. Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol. 2014;25:2342–50.CrossRefPubMedPubMedCentral
31.
go back to reference Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 2014;7:415.CrossRefPubMedPubMedCentral Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 2014;7:415.CrossRefPubMedPubMedCentral
32.
go back to reference Chu Y, Lin H, Wang J, Weng S, Lin C, Chien C. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS ONE. 2017;12:e0174601.CrossRefPubMedPubMedCentral Chu Y, Lin H, Wang J, Weng S, Lin C, Chien C. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS ONE. 2017;12:e0174601.CrossRefPubMedPubMedCentral
33.
go back to reference Song SO, Lee Y, Kim DW, Song YD, Nam JY, Park KH, et al. Trends in diabetes incidence in the last decade based on Korean National Health Insurance claims data. Endocrinol Metab. 2016;31:292–9.CrossRef Song SO, Lee Y, Kim DW, Song YD, Nam JY, Park KH, et al. Trends in diabetes incidence in the last decade based on Korean National Health Insurance claims data. Endocrinol Metab. 2016;31:292–9.CrossRef
34.
go back to reference Ko SH, Kim DJ, Park JH, et al. Trends of antidiabetic drug use in adult type 2 diabetes in Korea in 2002–2013: nationwide population-based cohort study. Medicine. 2016;95:e4018.CrossRefPubMedPubMedCentral Ko SH, Kim DJ, Park JH, et al. Trends of antidiabetic drug use in adult type 2 diabetes in Korea in 2002–2013: nationwide population-based cohort study. Medicine. 2016;95:e4018.CrossRefPubMedPubMedCentral
35.
go back to reference Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.CrossRefPubMed Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.CrossRefPubMed
36.
go back to reference Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, et al. Angiotensin-receptor blockade versus converting–enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351:1952–61.CrossRefPubMed Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, et al. Angiotensin-receptor blockade versus converting–enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351:1952–61.CrossRefPubMed
37.
go back to reference Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. The Lancet. 2000;355:253–9.CrossRef Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. The Lancet. 2000;355:253–9.CrossRef
38.
go back to reference National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.CrossRef National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.CrossRef
40.
go back to reference Rathmann W, Kostev K, Gruenberger J, Dworak M, Bader G, Giani G. Treatment persistence, hypoglycaemia and clinical outcomes in type 2 diabetes patients with dipeptidyl peptidase-4 inhibitors and sulphonylureas: a primary care database analysis. Diabetes Obes Metab. 2013;15:55–61.CrossRefPubMed Rathmann W, Kostev K, Gruenberger J, Dworak M, Bader G, Giani G. Treatment persistence, hypoglycaemia and clinical outcomes in type 2 diabetes patients with dipeptidyl peptidase-4 inhibitors and sulphonylureas: a primary care database analysis. Diabetes Obes Metab. 2013;15:55–61.CrossRefPubMed
41.
go back to reference Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int. 2014;86:701–11.CrossRefPubMed Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int. 2014;86:701–11.CrossRefPubMed
Metadata
Title
Effects of sarpogrelate on microvascular complications with type 2 diabetes
Authors
Hyunju Yoo
Inwhee Park
Dae Jung Kim
Sukhyang Lee
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
International Journal of Clinical Pharmacy / Issue 2/2019
Print ISSN: 2210-7703
Electronic ISSN: 2210-7711
DOI
https://doi.org/10.1007/s11096-019-00794-7

Other articles of this Issue 2/2019

International Journal of Clinical Pharmacy 2/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.