Skip to main content
Top
Published in: Calcified Tissue International 1/2019

01-01-2019 | Original Research

Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice

Authors: Qi Liu, Xiaolin Xu, Zhou Yang, Yapu Liu, Xiuhua Wu, Zhiping Huang, Junhao Liu, Zucheng Huang, Ganggang Kong, Jianyang Ding, Rong Li, Junyu Lin, Qingan Zhu

Published in: Calcified Tissue International | Issue 1/2019

Login to get access

Abstract

Metformin (Met), an anti-diabetes drug, has also shown therapeutic effects for ovariectomy-induced (OVX) osteoporosis. However, similar effects against bone loss induced by a ketogenic diet (KD) have not been tested. This study was aimed to evaluate the microarchitectures and biomechanics of KD-induced osteoporosis with and without administration of Met, and compare the effect of Met on bone loss induced by KD with OVX. Forty female C57BL/6J mice were randomly divided into Sham, OVX, OVX + Met (100 mg/kg/day), KD (3:1 ratio of fat to carbohydrate and protein), and KD + Met (100 mg/kg/day) groups. After 12 weeks, the bone mass and biomechanics were measured in distal cancellous bone and in mid-shaft cortical bone of the femur. The activities of serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP), together with immunohistochemistry staining of osteocalcin (OCN) and TRAP, were evaluated. Both OVX and KD induced significant bone loss and compromised biomechanical properties in the cancellous bone, but no effect was found in cortical bone. The administration of Met increased the cancellous bone volume fraction (BV/TV) from 3.78 to 5.23% following the OVX and from 4.04 to 6.33% following the KD, it also enhanced the compressive stiffness from 47 to 160 N/mm following the OVX and from 35 to 340 N/mm with the KD. Met effectively increased serum ALP in the KD group while decreased serum TRAP in the OVX group, but up-regulated expression of OCN and down-regulated expression of TRAP in both OVX and KD groups. The present study demonstrated that Met effectively attenuated the cancellous bone loss induced by KD and maintained the biomechanical properties of long bones, providing evidence for Met as a treatment of by KD-induced osteoporosis in teenage skeleton.
Literature
1.
go back to reference Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24:979–988CrossRefPubMed Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24:979–988CrossRefPubMed
3.
go back to reference Paoli A, Rubini A, Volek JS, Grimaldi KA (2013) Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67:789–796CrossRefPubMedPubMedCentral Paoli A, Rubini A, Volek JS, Grimaldi KA (2013) Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67:789–796CrossRefPubMedPubMedCentral
4.
go back to reference Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q (2017) Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 366:36–43CrossRefPubMed Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q (2017) Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 366:36–43CrossRefPubMed
5.
go back to reference Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q (2017) The ketone metabolite beta-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 34:2645–2655CrossRefPubMed Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q (2017) The ketone metabolite beta-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 34:2645–2655CrossRefPubMed
6.
go back to reference Hahn TJ, Halstead LR, DeVivo DC (1979) Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int 28:17–22CrossRefPubMed Hahn TJ, Halstead LR, DeVivo DC (1979) Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int 28:17–22CrossRefPubMed
7.
go back to reference Bergqvist AG, Schall JI, Stallings VA, Zemel BS (2008) Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 88:1678–1684CrossRefPubMed Bergqvist AG, Schall JI, Stallings VA, Zemel BS (2008) Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 88:1678–1684CrossRefPubMed
8.
go back to reference Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2010) Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25:275–284CrossRefPubMed Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2010) Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25:275–284CrossRefPubMed
9.
go back to reference Wu X, Huang Z, Wang X, Fu Z, Liu J, Huang Z, Kong G, Xu X, Ding J, Zhu Q (2017) Ketogenic diet compromises both cancellous and cortical bone mass in mice. Calcif Tissue Int 101:412–421CrossRefPubMed Wu X, Huang Z, Wang X, Fu Z, Liu J, Huang Z, Kong G, Xu X, Ding J, Zhu Q (2017) Ketogenic diet compromises both cancellous and cortical bone mass in mice. Calcif Tissue Int 101:412–421CrossRefPubMed
10.
go back to reference Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751CrossRefPubMed Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751CrossRefPubMed
11.
go back to reference Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299CrossRefPubMed Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299CrossRefPubMed
12.
go back to reference Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed
13.
go back to reference Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536:38–46CrossRefPubMed Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536:38–46CrossRefPubMed
14.
go back to reference Zhen D, Chen Y, Tang X (2010) Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 24:334–344CrossRefPubMed Zhen D, Chen Y, Tang X (2010) Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 24:334–344CrossRefPubMed
15.
go back to reference Gao Y, Li Y, Xue J, Jia Y, Hu J (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236CrossRefPubMed Gao Y, Li Y, Xue J, Jia Y, Hu J (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236CrossRefPubMed
16.
go back to reference Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909CrossRefPubMed Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909CrossRefPubMed
17.
go back to reference Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841SCrossRefPubMed Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841SCrossRefPubMed
18.
go back to reference Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMed Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMed
19.
go back to reference Arias-Moreno AJ, Ito K, van Rietbergen B (2016) Micro-Finite Element analysis will overestimate the compressive stiffness of fractured cancellous bone. J Biomech 49:2613–2618CrossRefPubMed Arias-Moreno AJ, Ito K, van Rietbergen B (2016) Micro-Finite Element analysis will overestimate the compressive stiffness of fractured cancellous bone. J Biomech 49:2613–2618CrossRefPubMed
20.
21.
go back to reference Qi S, Zheng H (2017) Combined effects of phytoestrogen genistein and silicon on ovariectomy-induced bone loss in rat. Biol Trace Elem Res 177:281–287CrossRefPubMed Qi S, Zheng H (2017) Combined effects of phytoestrogen genistein and silicon on ovariectomy-induced bone loss in rat. Biol Trace Elem Res 177:281–287CrossRefPubMed
22.
go back to reference Unsal F, Sonmez MF (2014) The effects of ovariectomy on ghrelin expression in the rat uterus. Adv Clin Exp Med 23:363–370CrossRefPubMed Unsal F, Sonmez MF (2014) The effects of ovariectomy on ghrelin expression in the rat uterus. Adv Clin Exp Med 23:363–370CrossRefPubMed
23.
go back to reference Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20:55–61CrossRefPubMed Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20:55–61CrossRefPubMed
24.
go back to reference Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33CrossRefPubMed Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33CrossRefPubMed
25.
go back to reference Sasaki H, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Kamo K, Shimada Y (2010) Effects of combination treatment with alendronate and vitamin K(2) on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab 28:403–409CrossRefPubMed Sasaki H, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Kamo K, Shimada Y (2010) Effects of combination treatment with alendronate and vitamin K(2) on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab 28:403–409CrossRefPubMed
26.
go back to reference Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91CrossRefPubMed Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91CrossRefPubMed
27.
go back to reference Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RJ, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214CrossRefPubMed Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RJ, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214CrossRefPubMed
28.
go back to reference Wang X, Liu Q, Zhou J, Wu X, Zhu Q (2017) β Hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats. Exp Anim 66:177–182CrossRefPubMedPubMedCentral Wang X, Liu Q, Zhou J, Wu X, Zhu Q (2017) β Hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats. Exp Anim 66:177–182CrossRefPubMedPubMedCentral
29.
go back to reference Frommelt L, Bielohuby M, Stoehr BJ, Menhofer D, Bidlingmaier M, Kienzle E (2014) Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats. Nutrition 30:869–875CrossRefPubMed Frommelt L, Bielohuby M, Stoehr BJ, Menhofer D, Bidlingmaier M, Kienzle E (2014) Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats. Nutrition 30:869–875CrossRefPubMed
30.
go back to reference Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286PubMed Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286PubMed
31.
go back to reference Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–239CrossRefPubMedPubMedCentral Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–239CrossRefPubMedPubMedCentral
32.
go back to reference Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326CrossRefPubMed Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326CrossRefPubMed
33.
go back to reference Chandra A, Lin T, Tribble MB, Zhu J, Altman AR, Tseng WJ, Zhang Y, Akintoye SO, Cengel K, Liu XS, Qin L (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40CrossRefPubMedPubMedCentral Chandra A, Lin T, Tribble MB, Zhu J, Altman AR, Tseng WJ, Zhang Y, Akintoye SO, Cengel K, Liu XS, Qin L (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40CrossRefPubMedPubMedCentral
34.
go back to reference Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358PubMed Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358PubMed
35.
go back to reference Bahlous A, Kalai E, Hadj SM, Bouzid K, Zerelli L (2006) Biochemical markers of bone remodeling: recent data of their applications in managing postmenopausal osteoporosis. Tunis Med 84:751–757PubMed Bahlous A, Kalai E, Hadj SM, Bouzid K, Zerelli L (2006) Biochemical markers of bone remodeling: recent data of their applications in managing postmenopausal osteoporosis. Tunis Med 84:751–757PubMed
36.
go back to reference Hwang YH, Son YJ, Paik MJ, Yee ST (2017) Effects of diisononyl phthalate on osteopenia in intact mice. Toxicol Appl Pharmacol 334:120–128CrossRefPubMed Hwang YH, Son YJ, Paik MJ, Yee ST (2017) Effects of diisononyl phthalate on osteopenia in intact mice. Toxicol Appl Pharmacol 334:120–128CrossRefPubMed
37.
go back to reference Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63:464–474CrossRefPubMed Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63:464–474CrossRefPubMed
38.
go back to reference Lin S, Huang J, Fu Z, Liang Y, Wu H, Xu L, Sun Y, Lee WY, Wu T, Qin L, Cui L, Li G (2015) The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcif Tissue Int 96:541–551CrossRefPubMed Lin S, Huang J, Fu Z, Liang Y, Wu H, Xu L, Sun Y, Lee WY, Wu T, Qin L, Cui L, Li G (2015) The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcif Tissue Int 96:541–551CrossRefPubMed
39.
go back to reference Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ (2007) The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 28:3063–3073CrossRefPubMed Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ (2007) The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 28:3063–3073CrossRefPubMed
40.
42.
go back to reference Comelekoglu U, Mutlu H, Yalin S, Bagis S, Yildiz A, Ogenler O (2007) Determining the biomechanical quality of normal and osteoporotic bones in rat femora through biomechanical test and finite element analysis. Acta Orthop Traumatol Turc 41:53–57PubMed Comelekoglu U, Mutlu H, Yalin S, Bagis S, Yildiz A, Ogenler O (2007) Determining the biomechanical quality of normal and osteoporotic bones in rat femora through biomechanical test and finite element analysis. Acta Orthop Traumatol Turc 41:53–57PubMed
43.
go back to reference van Eijden TM, van Ruijven LJ, Giesen EB (2004) Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif Tissue Int 75:502–508CrossRefPubMed van Eijden TM, van Ruijven LJ, Giesen EB (2004) Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif Tissue Int 75:502–508CrossRefPubMed
Metadata
Title
Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice
Authors
Qi Liu
Xiaolin Xu
Zhou Yang
Yapu Liu
Xiuhua Wu
Zhiping Huang
Junhao Liu
Zucheng Huang
Ganggang Kong
Jianyang Ding
Rong Li
Junyu Lin
Qingan Zhu
Publication date
01-01-2019
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2019
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0468-3

Other articles of this Issue 1/2019

Calcified Tissue International 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.