Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Metastasis | Research

NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2

Authors: Pengfei Xu, Shuangyan Ye, Keyi Li, Mengqiu Huang, Qianli Wang, Sisi Zeng, Xi Chen, Wenwen Gao, Jianping Chen, Qianbing Zhang, Zhuo Zhong, Ying Lin, Zhili Rong, Yang Xu, Bingtao Hao, Anghui Peng, Manzhao Ouyang, Qiuzhen Liu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

The dysfunction of type I interferon (IFN) signaling is an important mechanism of immune escape and metastasis in tumors. Increased NOS1 expression has been detected in melanoma, which correlated with dysfunctional IFN signaling and poor response to immunotherapy, but the specific mechanism has not been determined. In this study, we investigated the regulation of NOS1 on the interferon response and clarified the relevant molecular mechanisms.

Methods

After stable transfection of A375 cells with NOS1 expression plasmids, the transcription and expression of IFNα-stimulated genes (ISGs) were assessed using pISRE luciferase reporter gene analysis, RT-PCR, and western blotting, respectively. The effect of NOS1 on lung metastasis was assessed in melanoma mouse models. A biotin-switch assay was performed to detect the S-nitrosylation of HDAC2 by NOS1. ChIP-qPCR was conducted to measure the binding of HDAC2, H4K16ac, H4K5ac, H3ac, and RNA polymerase II in the promoters of ISGs after IFNα stimulation. This effect was further evaluated by altering the expression level of HDAC2 or by transfecting the HDAC2-C262A/C274A site mutant plasmids into cells. The coimmunoprecipitation assay was performed to detect the interaction of HDAC2 with STAT1 and STAT2. Loss-of-function and gain-of-function approaches were used to examine the effect of HDAC2-C262A/C274A on lung metastasis. Tumor infiltrating lymphocytes were analyzed by flow cytometry.

Results

HDAC2 is recruited to the promoter of ISGs and deacetylates H4K16 for the optimal expression of ISGs in response to IFNα treatment. Overexpression of NOS1 in melanoma cells decreases IFNα-responsiveness and induces the S-nitrosylation of HDAC2-C262/C274. This modification decreases the binding of HDAC2 with STAT1, thereby reducing the recruitment of HDAC2 to the ISG promoter and the deacetylation of H4K16. Moreover, expression of a mutant form of HDAC2, which cannot be nitrosylated, reverses the inhibition of ISG expression by NOS1 in vitro and decreases NOS1-induced lung metastasis and inhibition of tumor infiltrating lymphocytes in a melanoma mouse model.

Conclusions

This study provides evidence that NOS1 induces dysfunctional IFN signaling to promote lung metastasis in melanoma, highlighting NOS1-induced S-nitrosylation of HDAC2 in the regulation of IFN signaling via histone modification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Laurence Z, Lorenzo G, Oliver K, Smyth MJ, Guido K. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–14.CrossRef Laurence Z, Lorenzo G, Oliver K, Smyth MJ, Guido K. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–14.CrossRef
3.
go back to reference Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009;106(22):9010–5.PubMedPubMedCentralCrossRef Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009;106(22):9010–5.PubMedPubMedCentralCrossRef
4.
go back to reference Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836.PubMedCrossRef Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836.PubMedCrossRef
5.
go back to reference Antonella S, Takahiro Y, Erika V, Kariman C, Enot DP, Julien A, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301–9.CrossRef Antonella S, Takahiro Y, Erika V, Kariman C, Enot DP, Julien A, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301–9.CrossRef
6.
go back to reference Brockwell NK, Rautela J, Owen KL, Gearing LJ, Deb S, Harvey K, et al. Tumor inherent interferon regulators as biomarkers of long-term chemotherapeutic response in TNBC. NPJ Precision Oncol. 2019;3:21.CrossRef Brockwell NK, Rautela J, Owen KL, Gearing LJ, Deb S, Harvey K, et al. Tumor inherent interferon regulators as biomarkers of long-term chemotherapeutic response in TNBC. NPJ Precision Oncol. 2019;3:21.CrossRef
7.
go back to reference Katlinski KV, Gui J, Katlinskaya YV, Ortiz A, Chakraborty R, Bhattacharya S, et al. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell. 2017;31(2):194–207.PubMedPubMedCentralCrossRef Katlinski KV, Gui J, Katlinskaya YV, Ortiz A, Chakraborty R, Bhattacharya S, et al. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell. 2017;31(2):194–207.PubMedPubMedCentralCrossRef
8.
go back to reference Picaud S, Bardot B, De Maeyer E, Seif I. Enhanced tumor development in mice lacking a functional type I interferon receptor. J Interferon Cytokine Res. 2002;22(4):457–62.PubMedCrossRef Picaud S, Bardot B, De Maeyer E, Seif I. Enhanced tumor development in mice lacking a functional type I interferon receptor. J Interferon Cytokine Res. 2002;22(4):457–62.PubMedCrossRef
9.
go back to reference Bidwell BN, Slaney CY, Withana NP, Sam F, Yuan C, Sherene L, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–31.PubMedCrossRef Bidwell BN, Slaney CY, Withana NP, Sam F, Yuan C, Sherene L, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–31.PubMedCrossRef
10.
go back to reference Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.PubMedPubMedCentralCrossRef Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.PubMedPubMedCentralCrossRef
11.
go back to reference Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016;167(2):397–404.e9.PubMedPubMedCentralCrossRef Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016;167(2):397–404.e9.PubMedPubMedCentralCrossRef
12.
go back to reference Jackson DP, Watling D, Rogers NC, Banks RE, Kerr IM, Selby PJ, et al. The JAK/STAT pathway is not sufficient to sustain the antiproliferative response in an interferon-resistant human melanoma cell line. Melanoma Res. 2003;13(3):219–29.PubMedCrossRef Jackson DP, Watling D, Rogers NC, Banks RE, Kerr IM, Selby PJ, et al. The JAK/STAT pathway is not sufficient to sustain the antiproliferative response in an interferon-resistant human melanoma cell line. Melanoma Res. 2003;13(3):219–29.PubMedCrossRef
13.
go back to reference Di Trolio R, Simeone E, Di Lorenzo G, Buonerba C, Ascierto PA. The use of interferon in melanoma patients: a systematic review. Cytokine Growth Factor Rev. 2015;26(2):203–12.PubMedCrossRef Di Trolio R, Simeone E, Di Lorenzo G, Buonerba C, Ascierto PA. The use of interferon in melanoma patients: a systematic review. Cytokine Growth Factor Rev. 2015;26(2):203–12.PubMedCrossRef
14.
go back to reference Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE. 2005;2005(296):re11.PubMed Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE. 2005;2005(296):re11.PubMed
15.
go back to reference Chang H-M, Paulson M, Holko M, Rice CM, Williams BRG, Marié I, et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci U S A. 2004;101(26):9578–83.PubMedPubMedCentralCrossRef Chang H-M, Paulson M, Holko M, Rice CM, Williams BRG, Marié I, et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci U S A. 2004;101(26):9578–83.PubMedPubMedCentralCrossRef
16.
go back to reference Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci. 2003;100(25):14742–7.PubMedCrossRefPubMedCentral Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci. 2003;100(25):14742–7.PubMedCrossRefPubMedCentral
17.
go back to reference Sakamoto S, Potla R, Larner AC. Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J Biol Chem. 2004;279(39):40362–7.PubMedCrossRef Sakamoto S, Potla R, Larner AC. Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J Biol Chem. 2004;279(39):40362–7.PubMedCrossRef
18.
go back to reference Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem. 2004;279(29):30358–68.PubMedCrossRef Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem. 2004;279(29):30358–68.PubMedCrossRef
19.
go back to reference Icardi L, Lievens S, Mori R, Piessevaux J, Cauwer LD, Bosscher KD, et al. Opposed regulation of type I IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACS) 1 and 2. FASEB J. 2012;26(1):240–9.PubMedCrossRef Icardi L, Lievens S, Mori R, Piessevaux J, Cauwer LD, Bosscher KD, et al. Opposed regulation of type I IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACS) 1 and 2. FASEB J. 2012;26(1):240–9.PubMedCrossRef
20.
go back to reference Marie IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med. 2018;215(12):3194–212.PubMedPubMedCentralCrossRef Marie IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med. 2018;215(12):3194–212.PubMedPubMedCentralCrossRef
21.
go back to reference Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34.PubMedCrossRef Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34.PubMedCrossRef
22.
23.
go back to reference Stamler JS, Lamas S, ., Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–683.PubMedCrossRef Stamler JS, Lamas S, ., Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–683.PubMedCrossRef
24.
go back to reference Aranda E, Lopez-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Nitric oxide and cancer: the emerging role of S-nitrosylation. Curr Mol Med. 2012;12(1):50–67.PubMedCrossRef Aranda E, Lopez-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Nitric oxide and cancer: the emerging role of S-nitrosylation. Curr Mol Med. 2012;12(1):50–67.PubMedCrossRef
25.
go back to reference Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C, et al. Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest. 2014;124(5):2147–59.PubMedPubMedCentralCrossRef Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C, et al. Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest. 2014;124(5):2147–59.PubMedPubMedCentralCrossRef
26.
go back to reference Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 2008;455(7211):411–5.PubMedCrossRef Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 2008;455(7211):411–5.PubMedCrossRef
27.
go back to reference Zhu L, Li L, Zhang Q, Yang X, Zou Z, Hao B, et al. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Dis. 2017;3:17011.CrossRef Zhu L, Li L, Zhang Q, Yang X, Zou Z, Hao B, et al. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Dis. 2017;3:17011.CrossRef
28.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef
29.
go back to reference Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, et al. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget. 2017;8(20):33047–63.PubMedPubMedCentral Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, et al. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget. 2017;8(20):33047–63.PubMedPubMedCentral
31.
go back to reference Gustavo T, Oded S, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5.CrossRef Gustavo T, Oded S, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5.CrossRef
32.
go back to reference Millar CB, Kurdistani SK, Grunstein M. Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harb Symp Quant Biol. 2004;69:193–200.PubMedCrossRef Millar CB, Kurdistani SK, Grunstein M. Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harb Symp Quant Biol. 2004;69:193–200.PubMedCrossRef
33.
go back to reference Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, et al. A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J. 2011;30(13):2610–21.PubMedPubMedCentralCrossRef Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, et al. A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J. 2011;30(13):2610–21.PubMedPubMedCentralCrossRef
34.
go back to reference Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 2017;83:1–11.PubMedCrossRef Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 2017;83:1–11.PubMedCrossRef
35.
go back to reference Paulson M, Press C, Smith E, Tanese N, Levy DE. IFN-stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nat Cell Biol. 2002;4(2):140–7.PubMedCrossRef Paulson M, Press C, Smith E, Tanese N, Levy DE. IFN-stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nat Cell Biol. 2002;4(2):140–7.PubMedCrossRef
36.
go back to reference Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci U S A. 1998;95(12):6693–8.PubMedPubMedCentralCrossRef Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci U S A. 1998;95(12):6693–8.PubMedPubMedCentralCrossRef
37.
go back to reference Zhang R, Erler J, Langowski J. Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J. 2017;112(3):450–9.PubMedCrossRef Zhang R, Erler J, Langowski J. Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J. 2017;112(3):450–9.PubMedCrossRef
38.
go back to reference Urdinguio RG, Lopez V, Bayon GF. Diaz de la Guardia R, sierra MI, Garcia-Torano E, et al. chromatin regulation by histone H4 acetylation at lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Res. 2019;47(10):5016–37.PubMedPubMedCentralCrossRef Urdinguio RG, Lopez V, Bayon GF. Diaz de la Guardia R, sierra MI, Garcia-Torano E, et al. chromatin regulation by histone H4 acetylation at lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Res. 2019;47(10):5016–37.PubMedPubMedCentralCrossRef
39.
go back to reference Copur O, Gorchakov A, Finkl K, Kuroda MI, Muller J. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in drosophila. Proc Natl Acad Sci U S A. 2018;115(52):13336–41.PubMedPubMedCentralCrossRef Copur O, Gorchakov A, Finkl K, Kuroda MI, Muller J. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in drosophila. Proc Natl Acad Sci U S A. 2018;115(52):13336–41.PubMedPubMedCentralCrossRef
40.
go back to reference Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.PubMedCrossRef Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.PubMedCrossRef
42.
go back to reference Simone M, Vincenzo B, Donato N. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2010;27(3):317–52. Simone M, Vincenzo B, Donato N. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2010;27(3):317–52.
43.
go back to reference Ahmed B, Van Den Oord JJ. Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br J Dermatol. 1999;141(1):12–9.PubMedCrossRef Ahmed B, Van Den Oord JJ. Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br J Dermatol. 1999;141(1):12–9.PubMedCrossRef
44.
go back to reference Yang Z, Misner B, Ji H, Poulos TL, Silverman RB, Meyskens FL, et al. Targeting nitric oxide signaling with nNOS inhibitors as a novel strategy for the therapy and prevention of human melanoma. Antioxid Redox Signal. 2013;19(5):433–47.PubMedPubMedCentralCrossRef Yang Z, Misner B, Ji H, Poulos TL, Silverman RB, Meyskens FL, et al. Targeting nitric oxide signaling with nNOS inhibitors as a novel strategy for the therapy and prevention of human melanoma. Antioxid Redox Signal. 2013;19(5):433–47.PubMedPubMedCentralCrossRef
45.
go back to reference Nott A, Nitarska J, Veenvliet JV, Schacke S, Derijck AAHA, Sirko P, et al. S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci U S A. 2013;110(8):3113–8.PubMedPubMedCentralCrossRef Nott A, Nitarska J, Veenvliet JV, Schacke S, Derijck AAHA, Sirko P, et al. S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci U S A. 2013;110(8):3113–8.PubMedPubMedCentralCrossRef
46.
go back to reference Vaquero A, Scher M, Reinberg D. Biochemistry of Multiprotein HDAC Complexes; 2006.CrossRef Vaquero A, Scher M, Reinberg D. Biochemistry of Multiprotein HDAC Complexes; 2006.CrossRef
48.
go back to reference Rautela J, Baschuk N, Slaney CY, Jayatilleke KM, Xiao K, Bidwell BN, et al. Loss of host type-I IFN signaling accelerates metastasis and impairs NK-cell antitumor function in multiple models of breast Cancer. Cancer Immunol Res. 2015;3(11):1207–17.PubMedCrossRef Rautela J, Baschuk N, Slaney CY, Jayatilleke KM, Xiao K, Bidwell BN, et al. Loss of host type-I IFN signaling accelerates metastasis and impairs NK-cell antitumor function in multiple models of breast Cancer. Cancer Immunol Res. 2015;3(11):1207–17.PubMedCrossRef
49.
go back to reference Lin CL, Tsai ML, Lin CY, Hsu KW, Hsieh WS, Chi WM, et al. HDAC1 and HDAC2 Double Knockout Triggers Cell Apoptosis in Advanced Thyroid Cancer. Int J Mol Sci. 2019;20(2):454.PubMedCentralCrossRef Lin CL, Tsai ML, Lin CY, Hsu KW, Hsieh WS, Chi WM, et al. HDAC1 and HDAC2 Double Knockout Triggers Cell Apoptosis in Advanced Thyroid Cancer. Int J Mol Sci. 2019;20(2):454.PubMedCentralCrossRef
50.
go back to reference Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schafer C, et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 2017;36(13):1804–15.PubMedCrossRef Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schafer C, et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 2017;36(13):1804–15.PubMedCrossRef
51.
go back to reference Li L, Mei DT, Zeng Y. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016;84:284–90.PubMedCrossRef Li L, Mei DT, Zeng Y. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016;84:284–90.PubMedCrossRef
52.
go back to reference Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMedCrossRef Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMedCrossRef
53.
go back to reference Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 2005;12(4):395–404.PubMedCrossRef Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 2005;12(4):395–404.PubMedCrossRef
54.
go back to reference Wagner T, Brand P, Heinzel T, Kramer OH. Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta. 2014;1846(2):524–38.PubMed Wagner T, Brand P, Heinzel T, Kramer OH. Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta. 2014;1846(2):524–38.PubMed
55.
go back to reference Harms KL, Chen X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 2007;67(7):3145–52.PubMedCrossRef Harms KL, Chen X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 2007;67(7):3145–52.PubMedCrossRef
56.
go back to reference Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16(3):131–44.PubMedCrossRef Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16(3):131–44.PubMedCrossRef
57.
go back to reference Brockwell NK, Parker BS. Tumor inherent interferons: impact on immune reactivity and immunotherapy. Cytokine. 2019;118:42–7.PubMedCrossRef Brockwell NK, Parker BS. Tumor inherent interferons: impact on immune reactivity and immunotherapy. Cytokine. 2019;118:42–7.PubMedCrossRef
58.
go back to reference Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.PubMedCrossRef Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.PubMedCrossRef
Metadata
Title
NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2
Authors
Pengfei Xu
Shuangyan Ye
Keyi Li
Mengqiu Huang
Qianli Wang
Sisi Zeng
Xi Chen
Wenwen Gao
Jianping Chen
Qianbing Zhang
Zhuo Zhong
Ying Lin
Zhili Rong
Yang Xu
Bingtao Hao
Anghui Peng
Manzhao Ouyang
Qiuzhen Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1448-9

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine