Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Metastasis | Research

A pan-cancer analysis revealing the role of LFNG, MFNG and RFNG in tumor prognosis and microenvironment

Authors: Xun Gong, Chenglong Zheng, Haiying Jia, Yangruiyu Liu, Rui Yang, Zizhou Chen, Yihang Pan, Xiaowu Li, Yuchen Liu

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Fringe is a glycosyltransferase involved in tumor occurrence and metastasis. However, a comprehensive analysis of the Fringe family members lunatic fringe (LFNG), manic fringe (MFNG), radical fringe (RFNG) in human cancers is lacking.

Methods

In this study, we performed a pan-cancer analysis of Fringe family members in 33 cancer types with transcriptomic, genomic, methylation data from The Cancer Genome Atlas (TCGA) project. The correlation between Fringe family member expression and patient overall survival, copy number variation, methylation, Gene Ontology enrichment, and tumor-infiltrating lymphocytes (TILs) was investigated by using multiple databases, such as cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2. In vitro experiments and immunohistochemical assays were performed to validate our findings.

Results

High expression levels of LFNG, MFNG, RFNG were closely associated with poor overall survival in multiple cancers, particularly in pancreatic adenocarcinoma (PAAD), uveal melanoma (UVM), and brain lower-grade glioma (LGG). Copy number variation analysis revealed that diploid and gain mutations of LFNG was significantly increased in PAAD and stomach adenocarcinoma (STAD), and significantly associated with the methylation levels in promoter regions. Significant differential genes between high and low expression groups of these Fringe family members were found to be consistently enriched in immune response and T cell activation pathway, extracellular matrix adhesion pathway, RNA splicing and ion transport pathways. Correlation between the abundance of tumor-infiltrating lymphocytes (TILs) and LFNG, MFNG, and RFNG expression showed that high LFNG expression was associated with lower TIL levels, particularly in PAAD. In vitro experiment by using pancreatic cancer PANC1 cells showed that LFNG overexpression promoted cell proliferation and invasion. Immunohistochemical assay in 90 PAAD patients verified the expression level of LFNG and its relationship with the prognosis.

Conclusions

Our study provides a relatively comprehensive understanding of the expression, mutation, copy number, promoter methylation level changes along with prognosis values of LFNG, MFNG, and RFNG in different tumors. High LFNG expression may serve as a poor prognosis molecular marker for PAAD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.PubMedCrossRef Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.PubMedCrossRef
2.
go back to reference Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729–49.PubMedCrossRef Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729–49.PubMedCrossRef
3.
go back to reference Yoshimura M, Ihara Y, Taniguchi N. Changes of beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) in patients with Leukaemia. Glycoconj J. 1995;12(3):234–40.PubMedCrossRef Yoshimura M, Ihara Y, Taniguchi N. Changes of beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) in patients with Leukaemia. Glycoconj J. 1995;12(3):234–40.PubMedCrossRef
4.
go back to reference Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406(6794):369–75.PubMedCrossRef Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406(6794):369–75.PubMedCrossRef
5.
go back to reference Panin VM, Papayannopoulos V, Wilson R, Irvine KD. Fringe modulates notch-ligand interactions. Nature. 1997;387(6636):908–12.PubMedCrossRef Panin VM, Papayannopoulos V, Wilson R, Irvine KD. Fringe modulates notch-ligand interactions. Nature. 1997;387(6636):908–12.PubMedCrossRef
6.
go back to reference Kakuda S, LoPilato RK, Ito A, Haltiwanger RS. Canonical notch ligands and fringes have distinct effects on NOTCH1 and NOTCH2. J Biol Chem. 2020;295(43):14710–22.PubMedPubMedCentralCrossRef Kakuda S, LoPilato RK, Ito A, Haltiwanger RS. Canonical notch ligands and fringes have distinct effects on NOTCH1 and NOTCH2. J Biol Chem. 2020;295(43):14710–22.PubMedPubMedCentralCrossRef
7.
go back to reference Zhou BH, Lin WL, Long YL, Yang YK, Zhang H, Wu KM, Chu Q. Notch signaling pathway: architecture, Disease, and therapeutics. STTT. 2022;95:7. Zhou BH, Lin WL, Long YL, Yang YK, Zhang H, Wu KM, Chu Q. Notch signaling pathway: architecture, Disease, and therapeutics. STTT. 2022;95:7.
8.
go back to reference Aster JC, Pear WS, Blacklow SC. The varied roles of Notch in cancer. Annu Rev Pathol. 2017;12:245–75.PubMedCrossRef Aster JC, Pear WS, Blacklow SC. The varied roles of Notch in cancer. Annu Rev Pathol. 2017;12:245–75.PubMedCrossRef
9.
go back to reference Shao L, Moloney DJ, Haltiwanger R. Fringe modifies O-Fucose on mouse NOTCH1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem. 2003;278(10):7775–82.CrossRef Shao L, Moloney DJ, Haltiwanger R. Fringe modifies O-Fucose on mouse NOTCH1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem. 2003;278(10):7775–82.CrossRef
10.
go back to reference Th´elu J, Viallet JP, Dhouailly D. Differential expression pattern of the three fringe genes is associated with epidermal differentiation. J Invest Dermatol. 1998;111(5):903–6.PubMedCrossRef Th´elu J, Viallet JP, Dhouailly D. Differential expression pattern of the three fringe genes is associated with epidermal differentiation. J Invest Dermatol. 1998;111(5):903–6.PubMedCrossRef
11.
go back to reference Song Y, Kumar V, Wei HX, Qiu J, Stanley P. Lunatic, manic, and radical fringe each promote T and B cell development. J Immunol. 2016;196(1):232–43.PubMedCrossRef Song Y, Kumar V, Wei HX, Qiu J, Stanley P. Lunatic, manic, and radical fringe each promote T and B cell development. J Immunol. 2016;196(1):232–43.PubMedCrossRef
12.
go back to reference Chung WC, Zhang S, Challagundla L, Zhou Y, Xu K. Lunatic fringe and p53 cooperatively suppress mesenchymal stem-like Breast Cancer. Neoplasia. 2017;19(11):885–95.PubMedPubMedCentralCrossRef Chung WC, Zhang S, Challagundla L, Zhou Y, Xu K. Lunatic fringe and p53 cooperatively suppress mesenchymal stem-like Breast Cancer. Neoplasia. 2017;19(11):885–95.PubMedPubMedCentralCrossRef
13.
go back to reference Zhang S, Chung WC, Wu G, Egan SE, Xu K. Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of notch receptor activation. Neoplasia. 2014;16(2):158–67.PubMedPubMedCentralCrossRef Zhang S, Chung WC, Wu G, Egan SE, Xu K. Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of notch receptor activation. Neoplasia. 2014;16(2):158–67.PubMedPubMedCentralCrossRef
14.
go back to reference Del Velasco-Herrera C, van der Weyden M, Nsengimana L, Speak J, Sjoberg AO, Bishop MK, Jonsson DT, Newton-Bishop G, Adams J. Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes Melanoma Metastasis. Mol Oncol. 2018;12(2):239–55.CrossRef Del Velasco-Herrera C, van der Weyden M, Nsengimana L, Speak J, Sjoberg AO, Bishop MK, Jonsson DT, Newton-Bishop G, Adams J. Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes Melanoma Metastasis. Mol Oncol. 2018;12(2):239–55.CrossRef
15.
go back to reference Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M, Zhao Z, Wang Y, Zhao Y, Chen W, et al. Musashi2 contributes to the maintenance of CD44v6 + Liver cancer stem cells via NOTCH1 signaling pathway. J Exp Clin Cancer Res. 2019;38(1):505.PubMedPubMedCentralCrossRef Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M, Zhao Z, Wang Y, Zhao Y, Chen W, et al. Musashi2 contributes to the maintenance of CD44v6 + Liver cancer stem cells via NOTCH1 signaling pathway. J Exp Clin Cancer Res. 2019;38(1):505.PubMedPubMedCentralCrossRef
16.
go back to reference Xu K, Nieuwenhuis E, Cohen BL, Wang W, Canty AJ, Danska JS, Coultas L, Rossant J, Wu MY, Piscione TD, et al. Lunatic fringe-mediated notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L45–56.PubMedCrossRef Xu K, Nieuwenhuis E, Cohen BL, Wang W, Canty AJ, Danska JS, Coultas L, Rossant J, Wu MY, Piscione TD, et al. Lunatic fringe-mediated notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol. 2010;298(1):L45–56.PubMedCrossRef
17.
go back to reference Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE. Activation of notch signaling in human colon adenocarcinoma. Int J Oncol. 2008;33(6):1223–9.PubMed Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE. Activation of notch signaling in human colon adenocarcinoma. Int J Oncol. 2008;33(6):1223–9.PubMed
18.
go back to reference Lopez-Arribillaga E, Rodilla V, Colomer C, Vert A, Shelton A, Cheng JH, Yan B, Gonzalez-Perez A, Junttila MR, Iglesias M, et al. Manic Fringe deficiency imposes Jagged1 addiction to intestinal Tumor cells. Nat Commun. 2018;9(1):2992.PubMedPubMedCentralCrossRef Lopez-Arribillaga E, Rodilla V, Colomer C, Vert A, Shelton A, Cheng JH, Yan B, Gonzalez-Perez A, Junttila MR, Iglesias M, et al. Manic Fringe deficiency imposes Jagged1 addiction to intestinal Tumor cells. Nat Commun. 2018;9(1):2992.PubMedPubMedCentralCrossRef
19.
go back to reference Zhang S, Chung WC, Wu G, Egan SE, Miele L, Xu K. Manic fringe promotes a claudin-low Breast cancer phenotype through notch-mediated PIK3CG induction. Cancer Res. 2015;75(10):1936–43.PubMedPubMedCentralCrossRef Zhang S, Chung WC, Wu G, Egan SE, Miele L, Xu K. Manic fringe promotes a claudin-low Breast cancer phenotype through notch-mediated PIK3CG induction. Cancer Res. 2015;75(10):1936–43.PubMedPubMedCentralCrossRef
20.
go back to reference Zhang S, Chung WC, Xu K. Lunatic Fringe is a potent Tumor suppressor in Kras-initiated Pancreatic cancer. Oncogene. 2016;35(19):2485–95.PubMedCrossRef Zhang S, Chung WC, Xu K. Lunatic Fringe is a potent Tumor suppressor in Kras-initiated Pancreatic cancer. Oncogene. 2016;35(19):2485–95.PubMedCrossRef
21.
go back to reference Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and functional analyses implicate potential roles for EOGT and L-fringe in pancreatic cancers. Molecules 2021, 26(4). Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and functional analyses implicate potential roles for EOGT and L-fringe in pancreatic cancers. Molecules 2021, 26(4).
22.
go back to reference Mugisha S, Di X, Disoma C, Jiang H, Zhang S. Fringe family genes and their modulation of notch signaling in cancer. Biochim Biophys Acta Rev Cancer. 2022;1877(4):188746.PubMedCrossRef Mugisha S, Di X, Disoma C, Jiang H, Zhang S. Fringe family genes and their modulation of notch signaling in cancer. Biochim Biophys Acta Rev Cancer. 2022;1877(4):188746.PubMedCrossRef
23.
go back to reference Syrimi E, Lewison G, Sullivan R, Kearns P. Analysis of Global Pediatric Cancer Research and publications. JCO Glob Oncol. 2020;6:9–18.PubMedCrossRef Syrimi E, Lewison G, Sullivan R, Kearns P. Analysis of Global Pediatric Cancer Research and publications. JCO Glob Oncol. 2020;6:9–18.PubMedCrossRef
25.
go back to reference Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: a web server for Comprehensive Analysis of Tumor-infiltrating Immune cells. Cancer Res. 2017;77(21):e108–10.PubMedPubMedCentralCrossRef Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS. TIMER: a web server for Comprehensive Analysis of Tumor-infiltrating Immune cells. Cancer Res. 2017;77(21):e108–10.PubMedPubMedCentralCrossRef
26.
go back to reference Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH, et al. Development and validation of novel biomarkers related to M2 macrophages infiltration by Weighted Gene Co-expression Network Analysis in Prostate Cancer. Front Oncol. 2021;11:634075.PubMedPubMedCentralCrossRef Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH, et al. Development and validation of novel biomarkers related to M2 macrophages infiltration by Weighted Gene Co-expression Network Analysis in Prostate Cancer. Front Oncol. 2021;11:634075.PubMedPubMedCentralCrossRef
27.
go back to reference Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, Bin J, Liao Y, Rao J, Liao W. Tumor Microenvironment characterization in gastric Cancer identifies prognostic and immunotherapeutically relevant Gene signatures. Cancer Immunol Res. 2019;7(5):737–50.PubMedCrossRef Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, Bin J, Liao Y, Rao J, Liao W. Tumor Microenvironment characterization in gastric Cancer identifies prognostic and immunotherapeutically relevant Gene signatures. Cancer Immunol Res. 2019;7(5):737–50.PubMedCrossRef
28.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
29.
go back to reference Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ, Schmechel SC. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedPubMedCentralCrossRef Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ, Schmechel SC. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedPubMedCentralCrossRef
30.
go back to reference Liu Z, Zhang Y, Shi C, Zhou X, Xu K, Jiao D, Sun Z, Han X. A novel immune classification reveals distinct immune Escape mechanism and genomic alterations: implications for immunotherapy in hepatocellular carcinoma. J Transl Med. 2021;19(1):5.PubMedPubMedCentralCrossRef Liu Z, Zhang Y, Shi C, Zhou X, Xu K, Jiao D, Sun Z, Han X. A novel immune classification reveals distinct immune Escape mechanism and genomic alterations: implications for immunotherapy in hepatocellular carcinoma. J Transl Med. 2021;19(1):5.PubMedPubMedCentralCrossRef
31.
go back to reference Florian P, Alison VN, Megumi T, Kelley WM, Robert SH. Modulation of the NOTCH1 pathway by LUNATIC FRINGE is dominant over that of MANIC or RADICAL FRINGE. Molecules. 2021;26(19):5942.CrossRef Florian P, Alison VN, Megumi T, Kelley WM, Robert SH. Modulation of the NOTCH1 pathway by LUNATIC FRINGE is dominant over that of MANIC or RADICAL FRINGE. Molecules. 2021;26(19):5942.CrossRef
32.
go back to reference Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, Abbott UK, Fallon JF, Tabin C. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386(6623):366–73.PubMedCrossRef Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, Abbott UK, Fallon JF, Tabin C. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386(6623):366–73.PubMedCrossRef
33.
go back to reference Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de-Freitas-Junior JCM, Pinho SS, Gomes J, Magalhaes A, Gomes C, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and Metastasis. Cell Immunol. 2018;333:46–57.PubMedCrossRef Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de-Freitas-Junior JCM, Pinho SS, Gomes J, Magalhaes A, Gomes C, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and Metastasis. Cell Immunol. 2018;333:46–57.PubMedCrossRef
34.
go back to reference LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB. Fringe proteins modulate notch-ligand cis and trans interactions to specify signaling states. Elife. 2014;3:e02950.PubMedPubMedCentralCrossRef LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB. Fringe proteins modulate notch-ligand cis and trans interactions to specify signaling states. Elife. 2014;3:e02950.PubMedPubMedCentralCrossRef
35.
go back to reference Yousra MA, Abdessamad EK, Françoise S, Marion R, Martin B, et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71:103541.CrossRef Yousra MA, Abdessamad EK, Françoise S, Marion R, Martin B, et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71:103541.CrossRef
36.
go back to reference Shi XH, Radhakrishnan S, Wen J, Chen JH, Chen JJ, Lam BA, Mills RE, Stranger BE, Charles Lee C, Setlur SR. Association of CNVs with methylation variation. Npj Genom Med. 2020;41:5. Shi XH, Radhakrishnan S, Wen J, Chen JH, Chen JJ, Lam BA, Mills RE, Stranger BE, Charles Lee C, Setlur SR. Association of CNVs with methylation variation. Npj Genom Med. 2020;41:5.
38.
go back to reference Ioana V, Joanne BT, Julie SY, James AH, Ute K, Cynthia JG. Regulation of T lymphopoiesis by NOTCH1 and lunatic fringe–mediated competition for intrathymic niches. Nat Immunol. 2006;7:634–43.CrossRef Ioana V, Joanne BT, Julie SY, James AH, Ute K, Cynthia JG. Regulation of T lymphopoiesis by NOTCH1 and lunatic fringe–mediated competition for intrathymic niches. Nat Immunol. 2006;7:634–43.CrossRef
39.
go back to reference Zhou BH, Lin WL, Long YL, Yang YK, Zhang H, Wu KM, Chu Q. Notch signaling pathway: architecture, Disease, and therapeutics. STTT. 2022;7:95. Zhou BH, Lin WL, Long YL, Yang YK, Zhang H, Wu KM, Chu Q. Notch signaling pathway: architecture, Disease, and therapeutics. STTT. 2022;7:95.
40.
go back to reference Liu KP, Ren Y, Pan LJ, Qi Y, Jia W, Tao L, Hu ZY, Zhao J, Zhang HJ, Li L, et al. Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study. Int J Clin Exp Pathol. 2015;8(7):8311–35.PubMedPubMedCentral Liu KP, Ren Y, Pan LJ, Qi Y, Jia W, Tao L, Hu ZY, Zhao J, Zhang HJ, Li L, et al. Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study. Int J Clin Exp Pathol. 2015;8(7):8311–35.PubMedPubMedCentral
41.
go back to reference Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.PubMedCrossRef Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.PubMedCrossRef
42.
go back to reference RodrIguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018;18(3):204–11.PubMedCrossRef RodrIguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018;18(3):204–11.PubMedCrossRef
43.
go back to reference Haga Y, Ueda K. Glycosylation in cancer: its application as a biomarker and recent advances of analytical techniques. Glycoconj J. 2022;39(2):303–13.PubMedCrossRef Haga Y, Ueda K. Glycosylation in cancer: its application as a biomarker and recent advances of analytical techniques. Glycoconj J. 2022;39(2):303–13.PubMedCrossRef
44.
go back to reference Colin R, Tyler JS, Matthew BR, Jan N. Glycosylation in health and Disease. Nat Rev Nephrology. 2019;15:346–66.CrossRef Colin R, Tyler JS, Matthew BR, Jan N. Glycosylation in health and Disease. Nat Rev Nephrology. 2019;15:346–66.CrossRef
45.
go back to reference Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35(7):816–26.PubMedCrossRef Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35(7):816–26.PubMedCrossRef
46.
go back to reference Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR, Wang W, Loch AJ, Deng T, Zhao W, et al. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like Breast cancer. Cancer Cell. 2012;21(5):626–41.PubMedPubMedCentralCrossRef Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR, Wang W, Loch AJ, Deng T, Zhao W, et al. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like Breast cancer. Cancer Cell. 2012;21(5):626–41.PubMedPubMedCentralCrossRef
47.
go back to reference Liu J, Peng YH, Wei WY. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022;32(1):30–44.PubMedCrossRef Liu J, Peng YH, Wei WY. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022;32(1):30–44.PubMedCrossRef
49.
go back to reference Song YH, Kumar V, Wei HX, Qiu J, Stanley P, Lunatic. Manic, and Radical Fringe each promote T and B cell development. J Immunol. 2016;196(1):232–43.PubMedCrossRef Song YH, Kumar V, Wei HX, Qiu J, Stanley P, Lunatic. Manic, and Radical Fringe each promote T and B cell development. J Immunol. 2016;196(1):232–43.PubMedCrossRef
50.
go back to reference Kenjiroo M, Vivek K, Shweta V, Alison VN, Atsuko I, Florian P, Kelley WM, Pamela S, Robert SH. Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. J Biol Chem. 2022;298(7):102064.CrossRef Kenjiroo M, Vivek K, Shweta V, Alison VN, Atsuko I, Florian P, Kelley WM, Pamela S, Robert SH. Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. J Biol Chem. 2022;298(7):102064.CrossRef
51.
go back to reference Pennarubia F, Alison VN, Megumi T, Kelley WM, Robert SH. Modulation of the NOTCH1 pathway by LUNATIC FRINGE is dominant over that of MANIC or RADICAL FRINGE. Molecules. 2021;26(19):5942.PubMedPubMedCentralCrossRef Pennarubia F, Alison VN, Megumi T, Kelley WM, Robert SH. Modulation of the NOTCH1 pathway by LUNATIC FRINGE is dominant over that of MANIC or RADICAL FRINGE. Molecules. 2021;26(19):5942.PubMedPubMedCentralCrossRef
Metadata
Title
A pan-cancer analysis revealing the role of LFNG, MFNG and RFNG in tumor prognosis and microenvironment
Authors
Xun Gong
Chenglong Zheng
Haiying Jia
Yangruiyu Liu
Rui Yang
Zizhou Chen
Yihang Pan
Xiaowu Li
Yuchen Liu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11545-3

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine