Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Metastasis | Research article

Increasing of malignancy of breast cancer cells after cryopreservation: molecular detection and activation of angiogenesis after CAM-xenotransplantation

Authors: Xinxin Du, Plamen Todorov, Evgenia Isachenko, Gohar Rahimi, Peter Mallmann, Yuanguang Meng, Vladimir Isachenko

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Ovarian tissue cryopreservation has a wide range of cancerous indications. Avoiding relapse becomes a specific concern that clinicians frequently encounter. The data about the comparative viability of cancer cells after cryopreservation are limited. This study aimed to evaluate the effect of cryopreservation on breast cancer cells.

Methods

We used in-vitro cultured ZR-75-1 and MDA-MB-231 cell lines. Cell samples of each lineage were distributed into the non-intervened and cryopreserved groups. The cryopreservation procedures comprised programmed slow freezing followed by thawing at 100 °C, 60 s. Biological phenotypes and the related protein markers were compared between the two groups. The EVOS FL Auto 2 Cell Image System was used to monitor cell morphology. Cell proliferation, motility, and penetration were characterized by CCK-8, wound-healing, and transmembrane assay, respectively. The expression of Ki-67, P53, GATA3, E-cadherin, Vimentin, and F-Actin was captured by immunofluorescent staining and western blotting as the proxy measurements of the related properties. The chorioallantoic membrane (CAM) xenotransplantation was conducted to explore angiogenesis induced by cancer cells.

Results

After 5 days in vitro culture, the cell concentration of cryopreserved and non-intervened groups was 15.7 × 104 vs. 14.4 × 104cells/ml, (ZR-75-1, p > 0.05), and 25.1 × 104 vs. 26.6 × 104 cells/ml (MDA-MB-231, p > 0.05). Some cryopreserved ZR-75-1 cells presented spindle shape with filopodia and lamellipodia and dissociated from the cell cluster after cryopreservation. Both cell lines demonstrated increased cell migrating capability and invasion after cryopreservation. The expression of Ki-67 and P53 did not differ between the cryopreserved and non-intervened groups. E-cadherin and GATA3 expression downregulated in the cryopreserved ZR-75-1 cells. Vimentin and F-actin exhibited an upregulated level in cryopreserved ZR-75-1 and MDA-MB-231 cells. The cryopreserved MDA-MB-231 cells induced significant angiogenesis around the grafts on CAM with the vascular density 0.313 ± 0.03 and 0.342 ± 0.04, compared with that of non-intervened cells of 0.238 ± 0.05 and 0.244 ± 0.03, p < 0.0001.

Conclusions

Cryopreservation promotes breast cancer cells in terms of epithelial-mesenchymal transition and angiogenesis induction, thus increasing metastasis risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Macklon KT. Prevalence of deaths in a cohort of girls and women with cryopreserved ovarian tissue. Acta Obstet Gynecol Scand. 2019. Macklon KT. Prevalence of deaths in a cohort of girls and women with cryopreserved ovarian tissue. Acta Obstet Gynecol Scand. 2019.
2.
go back to reference Poirot C, Brugieres L, Yakouben K, Prades-Borio M, Marzouk F, de Lambert G, Pacquement H, Bernaudin F, Neven B, Paye-Jaouen A, et al. Ovarian tissue cryopreservation for fertility preservation in 418 girls and adolescents up to 15 years of age facing highly gonadotoxic treatment. Twenty years of experience at a single center. Acta Obstet Gynecol Scand. 2019;98(5):630.PubMedCrossRef Poirot C, Brugieres L, Yakouben K, Prades-Borio M, Marzouk F, de Lambert G, Pacquement H, Bernaudin F, Neven B, Paye-Jaouen A, et al. Ovarian tissue cryopreservation for fertility preservation in 418 girls and adolescents up to 15 years of age facing highly gonadotoxic treatment. Twenty years of experience at a single center. Acta Obstet Gynecol Scand. 2019;98(5):630.PubMedCrossRef
3.
go back to reference Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y, Wakatsuki T, Loupakis F, Lenz HJ. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res. 2012;18(3):645–53.PubMedCrossRef Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y, Wakatsuki T, Loupakis F, Lenz HJ. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res. 2012;18(3):645–53.PubMedCrossRef
4.
go back to reference Bochev I, Belemezova K, Shterev A, Kyurkchiev S. Effect of cryopreservation on the properties of human endometrial stromal cells used in embryo co-culture systems. J Assist Reprod Genet. 2016;33(4):473–80.PubMedPubMedCentralCrossRef Bochev I, Belemezova K, Shterev A, Kyurkchiev S. Effect of cryopreservation on the properties of human endometrial stromal cells used in embryo co-culture systems. J Assist Reprod Genet. 2016;33(4):473–80.PubMedPubMedCentralCrossRef
5.
go back to reference Hengstler JG, Utesch D, Steinberg P, Platt K, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev. 2000;32(1):81–118.PubMedCrossRef Hengstler JG, Utesch D, Steinberg P, Platt K, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev. 2000;32(1):81–118.PubMedCrossRef
6.
go back to reference Lin RZ, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM. Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant. 2011;20(4):515–22.PubMedCrossRef Lin RZ, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM. Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant. 2011;20(4):515–22.PubMedCrossRef
7.
go back to reference Yin Y, Liu H, Wang F, Li L, Deng M, Huang L, Zhao X. Transplantation of cryopreserved human umbilical cord blood-derived endothelial progenitor cells induces recovery of carotid artery injury in nude rats. Stem Cell Res Ther. 2015;6:37.PubMedPubMedCentralCrossRef Yin Y, Liu H, Wang F, Li L, Deng M, Huang L, Zhao X. Transplantation of cryopreserved human umbilical cord blood-derived endothelial progenitor cells induces recovery of carotid artery injury in nude rats. Stem Cell Res Ther. 2015;6:37.PubMedPubMedCentralCrossRef
8.
go back to reference Berkovitz A, Miller N, Silberman M, Belenky M, Itsykson P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Human Reprod (Oxford, England). 2018;33(11):1975–83.CrossRef Berkovitz A, Miller N, Silberman M, Belenky M, Itsykson P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Human Reprod (Oxford, England). 2018;33(11):1975–83.CrossRef
9.
go back to reference Gallardo M, Paulini F, Corral A, Balcerzyk M, Lucci CM, Ambroise J, Merola M, Fernandez-Maza L, Risco R, Dolmans MM, et al. Evaluation of a new freezing protocol containing 20% dimethyl sulphoxide concentration to cryopreserve human ovarian tissue. Reprod BioMed Online. 2018;37(6):653–65.PubMedCrossRef Gallardo M, Paulini F, Corral A, Balcerzyk M, Lucci CM, Ambroise J, Merola M, Fernandez-Maza L, Risco R, Dolmans MM, et al. Evaluation of a new freezing protocol containing 20% dimethyl sulphoxide concentration to cryopreserve human ovarian tissue. Reprod BioMed Online. 2018;37(6):653–65.PubMedCrossRef
10.
go back to reference Le MT, Nguyen TTT, Nguyen TT, Nguyen VT, Nguyen TTA, Nguyen VQH, Cao NT. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol. 2019;234:14–20.PubMedCrossRef Le MT, Nguyen TTT, Nguyen TT, Nguyen VT, Nguyen TTA, Nguyen VQH, Cao NT. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol. 2019;234:14–20.PubMedCrossRef
12.
go back to reference Du X, Klaschik K, Mallmann P, Isachenko E, Rahimi G, Zhao Y, Bruns C, Isachenko V. An experimental model of breast Cancer cells: informative protocol for in vitro culture. Anticancer Res. 2018;38(11):6237–45.PubMedCrossRef Du X, Klaschik K, Mallmann P, Isachenko E, Rahimi G, Zhao Y, Bruns C, Isachenko V. An experimental model of breast Cancer cells: informative protocol for in vitro culture. Anticancer Res. 2018;38(11):6237–45.PubMedCrossRef
13.
go back to reference Isachenko V, Todorov P, Isachenko E, Rahimi G, Hanstein B, Salama M, Mallmann P, Tchorbanov A, Hardiman P, Getreu N, et al. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate. Reprod Biol Endocrinol. 2016;14(1):79.PubMedPubMedCentralCrossRef Isachenko V, Todorov P, Isachenko E, Rahimi G, Hanstein B, Salama M, Mallmann P, Tchorbanov A, Hardiman P, Getreu N, et al. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate. Reprod Biol Endocrinol. 2016;14(1):79.PubMedPubMedCentralCrossRef
14.
go back to reference Isachenko V, Montag M, Isachenko E, van der Ven K, Dorn C, Roesing B, Braun F, Sadek F, van der Ven H. Effective method for in-vitro culture of cryopreserved human ovarian tissue. Reprod BioMed Online. 2006;13(2):228–34.PubMedCrossRef Isachenko V, Montag M, Isachenko E, van der Ven K, Dorn C, Roesing B, Braun F, Sadek F, van der Ven H. Effective method for in-vitro culture of cryopreserved human ovarian tissue. Reprod BioMed Online. 2006;13(2):228–34.PubMedCrossRef
15.
go back to reference Isachenko V, Mallmann P, Petrunkina AM, Rahimi G, Nawroth F, Hancke K, Felberbaum R, Genze F, Damjanoski I, Isachenko E. Comparison of in vitro- and Chorioallantoic membrane (CAM)-culture Systems for Cryopreserved Medulla-Contained Human Ovarian Tissue. PLoS One. 2012;7(3):9.CrossRef Isachenko V, Mallmann P, Petrunkina AM, Rahimi G, Nawroth F, Hancke K, Felberbaum R, Genze F, Damjanoski I, Isachenko E. Comparison of in vitro- and Chorioallantoic membrane (CAM)-culture Systems for Cryopreserved Medulla-Contained Human Ovarian Tissue. PLoS One. 2012;7(3):9.CrossRef
16.
go back to reference Zeng YC, Tang HR, Zeng LP, Chen Y, Wang GP, Wu RF. Assessment of the effect of different vitrification solutions on human ovarian tissue after short-term xenotransplantation onto the chick embryo chorioallantoic membrane. Mol Reprod Dev. 2016;83(4):359–69.PubMedCrossRef Zeng YC, Tang HR, Zeng LP, Chen Y, Wang GP, Wu RF. Assessment of the effect of different vitrification solutions on human ovarian tissue after short-term xenotransplantation onto the chick embryo chorioallantoic membrane. Mol Reprod Dev. 2016;83(4):359–69.PubMedCrossRef
17.
go back to reference Fabbri R, Macciocca M, Vicenti R, Paradisi R, Rossi S, Sabattini E, Gazzola A, Seracchioli R. First Italian birth after cryopreserved ovarian tissue transplantation in a patient affected by non-Hodgkin's lymphoma. Int J Hematol Oncol. 2018;7(4):Ijh08.PubMedPubMedCentralCrossRef Fabbri R, Macciocca M, Vicenti R, Paradisi R, Rossi S, Sabattini E, Gazzola A, Seracchioli R. First Italian birth after cryopreserved ovarian tissue transplantation in a patient affected by non-Hodgkin's lymphoma. Int J Hematol Oncol. 2018;7(4):Ijh08.PubMedPubMedCentralCrossRef
18.
go back to reference Ruan X, Du J, Korell M, Kong W, Lu D, Jin F, Li Y, Dai Y, Yin C, Yan S, et al. Case report of the first successful cryopreserved ovarian tissue retransplantation in China. Climacteric. 2018;21(6):613–6.PubMedCrossRef Ruan X, Du J, Korell M, Kong W, Lu D, Jin F, Li Y, Dai Y, Yin C, Yan S, et al. Case report of the first successful cryopreserved ovarian tissue retransplantation in China. Climacteric. 2018;21(6):613–6.PubMedCrossRef
19.
go back to reference Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, Mueller T. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther. 2017;8(1):66.PubMedPubMedCentralCrossRef Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, Mueller T. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther. 2017;8(1):66.PubMedPubMedCentralCrossRef
20.
go back to reference Gook DA, Edgar DH. Ovarian tissue cryopreservation. In: Donnez J, Kim SS, editors. Principles and practice of fertility preservation, vol. 2. New York: Cambridge University Press; 2011. p. 342–56.CrossRef Gook DA, Edgar DH. Ovarian tissue cryopreservation. In: Donnez J, Kim SS, editors. Principles and practice of fertility preservation, vol. 2. New York: Cambridge University Press; 2011. p. 342–56.CrossRef
21.
go back to reference Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13.PubMedPubMedCentralCrossRef Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13.PubMedPubMedCentralCrossRef
22.
go back to reference Rosso M, Lapyckyj L, Besso MJ, Monge M, Reventos J, Canals F, Quevedo Cuenca JO, Matos ML, Vazquez-Levin MH. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B. Cancer Metab. 2019;7:5.PubMedPubMedCentralCrossRef Rosso M, Lapyckyj L, Besso MJ, Monge M, Reventos J, Canals F, Quevedo Cuenca JO, Matos ML, Vazquez-Levin MH. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B. Cancer Metab. 2019;7:5.PubMedPubMedCentralCrossRef
23.
go back to reference Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.PubMedCrossRef Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.PubMedCrossRef
24.
go back to reference Kim KS, Kim J, Oh N, Kim MY, Park KS. ELK3-GATA3 axis modulates MDA-MB-231 metastasis by regulating cell-cell adhesion-related genes. Biochem Biophys Res Commun. 2018;498(3):509–15.PubMedCrossRef Kim KS, Kim J, Oh N, Kim MY, Park KS. ELK3-GATA3 axis modulates MDA-MB-231 metastasis by regulating cell-cell adhesion-related genes. Biochem Biophys Res Commun. 2018;498(3):509–15.PubMedCrossRef
25.
go back to reference Chen Y, Chen ZY, Chen L, Zhang JY, Fu LY, Tao L, Zhang Y, Hu XX, Shen XC. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3beta-regulated suppression of beta-catenin signaling. Biochem Pharmacol. 2019;166:33–45.PubMedCrossRef Chen Y, Chen ZY, Chen L, Zhang JY, Fu LY, Tao L, Zhang Y, Hu XX, Shen XC. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3beta-regulated suppression of beta-catenin signaling. Biochem Pharmacol. 2019;166:33–45.PubMedCrossRef
26.
go back to reference Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine. 2019;120:155–64.PubMedCrossRef Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine. 2019;120:155–64.PubMedCrossRef
27.
go back to reference Isachenko V, Todorov P, Isachenko E, Rahimi G, Tchorbanov A, Mihaylova N, Manoylov I, Mallmann P, Merzenich M. Long-time cooling before cryopreservation decreased translocation of Phosphatidylserine (Ptd-L-Ser) in human ovarian tissue. PLoS One. 2015;10(6):e0129108.PubMedPubMedCentralCrossRef Isachenko V, Todorov P, Isachenko E, Rahimi G, Tchorbanov A, Mihaylova N, Manoylov I, Mallmann P, Merzenich M. Long-time cooling before cryopreservation decreased translocation of Phosphatidylserine (Ptd-L-Ser) in human ovarian tissue. PLoS One. 2015;10(6):e0129108.PubMedPubMedCentralCrossRef
28.
go back to reference Hussain S. Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations. Methods Mol Biol (Clifton, NJ). 2019;1894:123–31.CrossRef Hussain S. Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations. Methods Mol Biol (Clifton, NJ). 2019;1894:123–31.CrossRef
29.
go back to reference Makarov VI, Khmelinskii I, Javadov S. Computational Modeling of In Vitro Swelling of Mitochondria: A Biophysical Approach. Molecules. 2018;23:4.CrossRef Makarov VI, Khmelinskii I, Javadov S. Computational Modeling of In Vitro Swelling of Mitochondria: A Biophysical Approach. Molecules. 2018;23:4.CrossRef
30.
go back to reference Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease. Int J Mol Sci. 2018;19:11.CrossRef Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease. Int J Mol Sci. 2018;19:11.CrossRef
31.
go back to reference Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of Cancer progression. Trends Cancer. 2016;2(12):758–70.PubMedCrossRef Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of Cancer progression. Trends Cancer. 2016;2(12):758–70.PubMedCrossRef
33.
go back to reference Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol. 2013;49(3):261–8.PubMedCrossRef Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol. 2013;49(3):261–8.PubMedCrossRef
34.
go back to reference Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 2014;4:3793.PubMedPubMedCentralCrossRef Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 2014;4:3793.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang Y, Fang N, You J, Zhou Q. Advances in the relationship between tumor cell metabolism and tumor metastasis. Zhongguo Fei Ai Za Zhi. 2014;17(11):812–8.PubMed Zhang Y, Fang N, You J, Zhou Q. Advances in the relationship between tumor cell metabolism and tumor metastasis. Zhongguo Fei Ai Za Zhi. 2014;17(11):812–8.PubMed
36.
go back to reference Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, Cheng Q, Yang J, Bai J, Zhang Y, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363.PubMedPubMedCentralCrossRef Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, Cheng Q, Yang J, Bai J, Zhang Y, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363.PubMedPubMedCentralCrossRef
37.
go back to reference Zhou R, Wang S, Wen H, Wang M, Wu M. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models. Exp Cell Res. 2019;380(2):141–8.PubMedCrossRef Zhou R, Wang S, Wen H, Wang M, Wu M. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models. Exp Cell Res. 2019;380(2):141–8.PubMedCrossRef
38.
go back to reference Thammineni KL, Thakur GK, Kaur N, Banerjee BD. Significance of MMP-9 and VEGF-C expression in north Indian women with breast cancer diagnosis. Mol Cell Biochem. 2019. Thammineni KL, Thakur GK, Kaur N, Banerjee BD. Significance of MMP-9 and VEGF-C expression in north Indian women with breast cancer diagnosis. Mol Cell Biochem. 2019.
40.
go back to reference Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.PubMedPubMedCentralCrossRef Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.PubMedPubMedCentralCrossRef
Metadata
Title
Increasing of malignancy of breast cancer cells after cryopreservation: molecular detection and activation of angiogenesis after CAM-xenotransplantation
Authors
Xinxin Du
Plamen Todorov
Evgenia Isachenko
Gohar Rahimi
Peter Mallmann
Yuanguang Meng
Vladimir Isachenko
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07227-z

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine