Skip to main content
Top
Published in: Skeletal Radiology 6/2024

02-12-2023 | Metastasis | Scientific Article

Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting

Authors: Hokyun Byun, Dongyeob Han, Ho Jong Chun, Sheen-Woo Lee

Published in: Skeletal Radiology | Issue 6/2024

Login to get access

Abstract

Objectives

To assess the T1 and T2 values of bone marrow lesions in spine and pelvis derived from magnetic resonance fingerprinting (MRF) and to evaluate the differences in values among bone metastasis, red marrow and fatty marrow.

Methods

Sixty patients who underwent lumbar spine and pelvic MRI with magnetic resonance fingerprinting were retrospectively included. Among eligible patients, those with bone metastasis, benign red marrow deposition and normal fatty marrow were identified. Two radiologists independently measured the T1 and T2 values from metastatic bone lesions, fatty marrow, and red marrow deposition on three-dimensional-magnetic resonance fingerprinting. Intergroup comparison and interobserver agreement were analyzed.

Results

T1 relaxation time was significantly higher in osteoblastic metastasis than in red marrow (1674.6 ± 436.3 vs 858.7 ± 319.5, p < .001). Intraclass correlation coefficients for T1 and T2 values were 0.96 (p < 0.001) and 0.83 (p < 0.001), respectively. T2 relaxation time of osteoblastic metastasis and red marrow deposition had no evidence of a difference (osteoblastic metastasis, 57.9 ± 25.0 vs red marrow, 58.0 ± 34.4, p = 0.45), as were the average T2 values of osteolytic metastasis and red marrow deposition (osteolytic metastasis, 45.3 ± 15.1 vs red marrow, 58.0 ± 34.4, p = 0.63).

Conclusions

We report the feasibility of three-dimensional-magnetic resonance fingerprinting based quantification of bone marrow to differentiate bone metastasis from red marrow. Simultaneous T1 and T2 quantification of metastasis and red marrow deposition was possible in spine and pelvis and showed significant different values with excellent inter-reader agreement.

Advance in knowledge

T1 values from three-dimensional-magnetic resonance fingerprinting might be a useful quantifier for evaluating bone marrow lesions.
Literature
1.
go back to reference Swartz PG, Roberts CC. Radiological reasoning: bone marrow changes on MRI. AJR Am J Roentgenol. 2009;193(3):S1-4-S5-9.PubMed Swartz PG, Roberts CC. Radiological reasoning: bone marrow changes on MRI. AJR Am J Roentgenol. 2009;193(3):S1-4-S5-9.PubMed
2.
go back to reference Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.PubMedCrossRef Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.PubMedCrossRef
3.
go back to reference Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology. 2018;286(3):948–59.PubMedCrossRef Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology. 2018;286(3):948–59.PubMedCrossRef
4.
go back to reference Vanel D, Missenard G, Le Cesne A, Guinebretière JM. Red marrow recolonization induced by growth factors mimicking an increase in tumor volume during preoperative chemotherapy: MR study. J Comput Assist Tomogr. 1997;21(4):529–31.PubMedCrossRef Vanel D, Missenard G, Le Cesne A, Guinebretière JM. Red marrow recolonization induced by growth factors mimicking an increase in tumor volume during preoperative chemotherapy: MR study. J Comput Assist Tomogr. 1997;21(4):529–31.PubMedCrossRef
5.
go back to reference Sakamoto A, Otsuki B, Okamoto T, Goto T, Yoshimura T, Matsuda S. Diffuse Appearance of Red Bone Marrow on MRI Mimics Cancer Metastasis and Might be Associated with Heavy Smoking. Open Orthop J. 2018;12(1):451–61.CrossRef Sakamoto A, Otsuki B, Okamoto T, Goto T, Yoshimura T, Matsuda S. Diffuse Appearance of Red Bone Marrow on MRI Mimics Cancer Metastasis and Might be Associated with Heavy Smoking. Open Orthop J. 2018;12(1):451–61.CrossRef
7.
go back to reference Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.PubMedCrossRef Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.PubMedCrossRef
8.
go back to reference Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.PubMedPubMedCentral Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.PubMedPubMedCentral
9.
go back to reference Chan J, Peh W, Tsui E, Chau L, Cheung K, Chan K, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.PubMedCrossRef Chan J, Peh W, Tsui E, Chau L, Cheung K, Chan K, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.PubMedCrossRef
10.
go back to reference Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.PubMedCrossRef Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.PubMedCrossRef
11.
go back to reference Bray TJ, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91(1089):20170344.PubMed Bray TJ, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91(1089):20170344.PubMed
12.
go back to reference Leplat C, Hossu G, Chen B, De Verbizier J, Beaumont M, Blum A, et al. Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? AJR Am J Roentgenol. 2018;211(5):1092–8.PubMedCrossRef Leplat C, Hossu G, Chen B, De Verbizier J, Beaumont M, Blum A, et al. Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? AJR Am J Roentgenol. 2018;211(5):1092–8.PubMedCrossRef
13.
go back to reference Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74(6):1621–31.PubMedCrossRef Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74(6):1621–31.PubMedCrossRef
14.
go back to reference Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017;78(4):1452–7.PubMedCrossRef Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017;78(4):1452–7.PubMedCrossRef
15.
go back to reference Buonincontri G, Biagi L, Retico A, Cecchi P, Cosottini M, Gallagher FA, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. Neuroimage. 2019;195:362–72.PubMedCrossRef Buonincontri G, Biagi L, Retico A, Cecchi P, Cosottini M, Gallagher FA, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. Neuroimage. 2019;195:362–72.PubMedCrossRef
16.
go back to reference Körzdörfer G, Kirsch R, Liu K, Pfeuffer J, Hensel B, Jiang Y, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292(2):429–37.PubMedCrossRef Körzdörfer G, Kirsch R, Liu K, Pfeuffer J, Hensel B, Jiang Y, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292(2):429–37.PubMedCrossRef
17.
go back to reference Han D, Choi MH, Lee YJ, Kim DH. Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies. Korean J Radiol. 2021;22(8):1332–40.PubMedPubMedCentralCrossRef Han D, Choi MH, Lee YJ, Kim DH. Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies. Korean J Radiol. 2021;22(8):1332–40.PubMedPubMedCentralCrossRef
18.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.PubMedCrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.PubMedCrossRef
20.
go back to reference Saifuddin A, Tyler P, Rajakulasingam R. Imaging of bone marrow pitfalls with emphasis on MRI. Br J Radiol. 2023;96(1142):20220063.PubMedCrossRef Saifuddin A, Tyler P, Rajakulasingam R. Imaging of bone marrow pitfalls with emphasis on MRI. Br J Radiol. 2023;96(1142):20220063.PubMedCrossRef
21.
go back to reference Akay S, Kocaoglu M, Emer O, Battal B, Arslan N. Diagnostic accuracy of whole-body diffusion-weighted magnetic resonance imaging with 3.0 T in detection of primary and metastatic neoplasms. J Med Imaging Radiat Oncol. 2013;57(3):274–82.PubMedCrossRef Akay S, Kocaoglu M, Emer O, Battal B, Arslan N. Diagnostic accuracy of whole-body diffusion-weighted magnetic resonance imaging with 3.0 T in detection of primary and metastatic neoplasms. J Med Imaging Radiat Oncol. 2013;57(3):274–82.PubMedCrossRef
22.
go back to reference Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16(5):1005–14.PubMedCrossRef Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16(5):1005–14.PubMedCrossRef
23.
go back to reference Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.PubMedCrossRef Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.PubMedCrossRef
25.
go back to reference Messiou C, Hillengass J, Delorme S, Lecouvet FE, Moulopoulos LA, Collins DJ, et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology. 2019;291(1):5–13.PubMedCrossRef Messiou C, Hillengass J, Delorme S, Lecouvet FE, Moulopoulos LA, Collins DJ, et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology. 2019;291(1):5–13.PubMedCrossRef
26.
go back to reference Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole Body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664.PubMedPubMedCentralCrossRef Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole Body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664.PubMedPubMedCentralCrossRef
27.
go back to reference McElroy S, Winfield JM, Westerland O, Charles-Edwards G, Bell J, Neji R, et al. Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T. MAGMA. 2021;34(4):513–21.PubMedCrossRef McElroy S, Winfield JM, Westerland O, Charles-Edwards G, Bell J, Neji R, et al. Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T. MAGMA. 2021;34(4):513–21.PubMedCrossRef
28.
go back to reference Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, et al. Simultaneous T(1) and T(2) Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. Tomography. 2015;1(2):136–44.PubMedPubMedCentralCrossRef Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, et al. Simultaneous T(1) and T(2) Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. Tomography. 2015;1(2):136–44.PubMedPubMedCentralCrossRef
29.
go back to reference Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, et al. MR Fingerprinting of Adult Brain Tumors: Initial Experience. AJNR Am J Neuroradiol. 2017;38(3):492–9.PubMedPubMedCentralCrossRef Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, et al. MR Fingerprinting of Adult Brain Tumors: Initial Experience. AJNR Am J Neuroradiol. 2017;38(3):492–9.PubMedPubMedCentralCrossRef
30.
go back to reference Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019;290(1):33–40.PubMedCrossRef Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019;290(1):33–40.PubMedCrossRef
31.
go back to reference Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging. 2019;50(4):1133–43.PubMedPubMedCentralCrossRef Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging. 2019;50(4):1133–43.PubMedPubMedCentralCrossRef
32.
go back to reference Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac Magnetic Resonance Fingerprinting: Technical Overview and Initial Results. JACC Cardiovasc Imaging. 2018;11(12):1837–53.PubMedPubMedCentralCrossRef Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac Magnetic Resonance Fingerprinting: Technical Overview and Initial Results. JACC Cardiovasc Imaging. 2018;11(12):1837–53.PubMedPubMedCentralCrossRef
33.
go back to reference Coristine AJ, Hamilton J, van Heeswijk RB, Hullin R, Seiberlich N. Cardiac magnetic resonance fingerprinting in heart transplant recipients. Coristine AJ, Hamilton J, van Heeswijk RB, Hullin R, Seiberlich N. Cardiac magnetic resonance fingerprinting in heart transplant recipients.
34.
go back to reference Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid Radial T(1) and T(2) Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid Radial T(1) and T(2) Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef
35.
go back to reference Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med. 2019;81(4):2551–65.PubMedCrossRef Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med. 2019;81(4):2551–65.PubMedCrossRef
36.
go back to reference Ma D, Jones SE, Deshmane A, Sakaie K, Pierre EY, Larvie M, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging. 2019;49(5):1333–46.PubMedCrossRef Ma D, Jones SE, Deshmane A, Sakaie K, Pierre EY, Larvie M, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging. 2019;49(5):1333–46.PubMedCrossRef
37.
go back to reference Liao C, Wang K, Cao X, Li Y, Wu D, Ye H, et al. Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting. Radiology. 2018;288(3):804–12.PubMedCrossRef Liao C, Wang K, Cao X, Li Y, Wu D, Ye H, et al. Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting. Radiology. 2018;288(3):804–12.PubMedCrossRef
38.
go back to reference Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology. 2016;279(1):278–86.PubMedCrossRef Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology. 2016;279(1):278–86.PubMedCrossRef
39.
go back to reference Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78(5):1812–23.PubMedCrossRef Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78(5):1812–23.PubMedCrossRef
40.
go back to reference Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.PubMedPubMedCentralCrossRef Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.PubMedPubMedCentralCrossRef
41.
go back to reference Chen Y, Chen MH, Baluyot KR, Potts TM, Jimenez J, Lin W. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage. 2019;186:782–93.PubMedCrossRef Chen Y, Chen MH, Baluyot KR, Potts TM, Jimenez J, Lin W. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage. 2019;186:782–93.PubMedCrossRef
42.
go back to reference Arita Y, Takahara T, Yoshida S, Kwee TC, Yajima S, Ishii C, et al. Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging. Invest Radiol. 2019;54(10):638–44.PubMedCrossRef Arita Y, Takahara T, Yoshida S, Kwee TC, Yajima S, Ishii C, et al. Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging. Invest Radiol. 2019;54(10):638–44.PubMedCrossRef
43.
go back to reference Choi MH, Lee SW, Kim HG, Kim JY, Oh SW, Han D, et al. 3D MR fingerprinting (MRF) for simultaneous T1 and T2 quantification of the bone metastasis: Initial validation in prostate cancer patients. Eur J Radiol. 2021;144:109990.PubMedCrossRef Choi MH, Lee SW, Kim HG, Kim JY, Oh SW, Han D, et al. 3D MR fingerprinting (MRF) for simultaneous T1 and T2 quantification of the bone metastasis: Initial validation in prostate cancer patients. Eur J Radiol. 2021;144:109990.PubMedCrossRef
44.
go back to reference Sharafi A, Medina K, Zibetti MWV, Rao S, Cloos MA, Brown R, et al. Simultaneous T1, T2, and T1rho relaxation mapping of the lower leg muscle with MR fingerprinting. Magn Reson Med. 2021;86(1):372–81.PubMedPubMedCentralCrossRef Sharafi A, Medina K, Zibetti MWV, Rao S, Cloos MA, Brown R, et al. Simultaneous T1, T2, and T1rho relaxation mapping of the lower leg muscle with MR fingerprinting. Magn Reson Med. 2021;86(1):372–81.PubMedPubMedCentralCrossRef
45.
go back to reference Nolte T, Gross-Weege N, Doneva M, Koken P, Elevelt A, Truhn D, et al. Spiral blurring correction with water-fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020;83(4):1192–207.PubMedCrossRef Nolte T, Gross-Weege N, Doneva M, Koken P, Elevelt A, Truhn D, et al. Spiral blurring correction with water-fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020;83(4):1192–207.PubMedCrossRef
46.
go back to reference Jaubert O, Cruz G, Bustin A, Hajhosseiny R, Nazir S, Schneider T, et al. T1, T2, and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation. J Magn Reson Imaging. 2021;53(4):1253–65.PubMedCrossRef Jaubert O, Cruz G, Bustin A, Hajhosseiny R, Nazir S, Schneider T, et al. T1, T2, and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation. J Magn Reson Imaging. 2021;53(4):1253–65.PubMedCrossRef
47.
go back to reference Marty B, Reyngoudt H, Boisserie JM, Le Louër J, Araujo CAE, Fromes Y, et al. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology. 2021;300(3):652–60.PubMedCrossRef Marty B, Reyngoudt H, Boisserie JM, Le Louër J, Araujo CAE, Fromes Y, et al. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology. 2021;300(3):652–60.PubMedCrossRef
Metadata
Title
Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting
Authors
Hokyun Byun
Dongyeob Han
Ho Jong Chun
Sheen-Woo Lee
Publication date
02-12-2023
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 6/2024
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04521-2

Other articles of this Issue 6/2024

Skeletal Radiology 6/2024 Go to the issue