Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Meningitis | Research

Pericytes are protective in experimental pneumococcal meningitis through regulating leukocyte infiltration and blood–brain barrier function

Authors: Nina C. Teske, Susanne Dyckhoff-Shen, Paul Beckenbauer, Jan Philipp Bewersdorf, Joo-Yeon Engelen-Lee, Sven Hammerschmidt, Roland E. Kälin, Hans-Walter Pfister, Matthijs C. Brouwer, Matthias Klein, Rainer Glass, Diederik van de Beek, Uwe Koedel

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Brain pericytes participate in the regulation of cerebral blood flow and the maintenance of blood–brain barrier integrity. Because of their perivascular localization, their receptor repertoire, and their potential ability to respond to inflammatory and infectious stimuli by producing various cytokines and chemokines, these cells are also thought to play an active role in the immune response to brain infections. This assumption is mainly supported by in vitro studies, investigations in in vivo disease models are largely missing. Here, we analysed the role of brain pericytes in pneumococcal meningitis, in vitro and in vivo in two animal models of pneumococcal meningitis.

Methods

Primary murine and human pericytes were stimulated with increasing concentrations of different serotypes of Streptococcus pneumoniae in the presence or absence of Toll-like receptor inhibitors and their cell viability and cytokine production were monitored. To gain insight into the role of pericytes in brain infection in vivo, we performed studies in a zebrafish embryo model of pneumococcal meningitis in which pericytes were pharmacologically depleted. Furthermore, we analyzed the impact of genetically induced pericyte ablation on disease progression, intracranial complications, and brain inflammation in an adult mouse model of this disease.

Results

Both murine and human pericytes reacted to pneumococcal exposure with the release of selected cytokines. This cytokine release is pneumolysin-dependent, TLR-dependent in murine (but not human) pericytes and can be significantly increased by macrophage-derived IL-1b. Pharmacological depletion of pericytes in zebrafish embryos resulted in increased cerebral edema and mortality due to pneumococcal meningitis. Correspondingly, in an adult mouse meningitis model, a more pronounced blood–brain barrier disruption and leukocyte infiltration, resulting in an unfavorable disease course, was observed following genetic pericyte ablation. The degree of leukocyte infiltration positively correlated with an upregulation of chemokine expression in the brains of pericyte-depleted mice.

Conclusions

Our findings show that pericytes play a protective role in pneumococcal meningitis by impeding leukocyte migration and preventing blood–brain barrier breaching. Thus, preserving the integrity of the pericyte population has the potential as a new therapeutic strategy in pneumococcal meningitis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers. 2016;2:16074.PubMedCrossRef Van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers. 2016;2:16074.PubMedCrossRef
2.
go back to reference Van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet. 2021;398:1171–83.PubMedCrossRef Van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet. 2021;398:1171–83.PubMedCrossRef
3.
go back to reference Weber JR, Tuomanen EI. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol. 2007;184:45–52.PubMedCrossRef Weber JR, Tuomanen EI. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol. 2007;184:45–52.PubMedCrossRef
4.
go back to reference Zanluqui NG, McGavern DB. Bacterial meningitis hits an immunosuppressive nerve. Nature. 2023;615:396.PubMedCrossRef Zanluqui NG, McGavern DB. Bacterial meningitis hits an immunosuppressive nerve. Nature. 2023;615:396.PubMedCrossRef
5.
go back to reference Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature. 2023;615:472.PubMedPubMedCentralCrossRef Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature. 2023;615:472.PubMedPubMedCentralCrossRef
6.
go back to reference Polfliet MM, Zwijnenburg PJ, Van Furth AM, van Der P, Dopp EA, Renardel DL, van Kesteren-Hendrikx EM, Van Rooijen N, Dijkstra CD, van Den Berg TK. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol. 2001;167:4644–50.PubMedCrossRef Polfliet MM, Zwijnenburg PJ, Van Furth AM, van Der P, Dopp EA, Renardel DL, van Kesteren-Hendrikx EM, Van Rooijen N, Dijkstra CD, van Den Berg TK. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol. 2001;167:4644–50.PubMedCrossRef
7.
go back to reference Trostdorf F, Bruck W, Schmitz-Salue M, Stuertz K, Hopkins SJ, van Rooijen N, Huitinga I, Nau R. Reduction of meningeal macrophages does not decrease migration of granulocytes into the CSF and brain parenchyma in experimental pneumococcal meningitis. J Neuroimmunol. 1999;99:205–10.PubMedCrossRef Trostdorf F, Bruck W, Schmitz-Salue M, Stuertz K, Hopkins SJ, van Rooijen N, Huitinga I, Nau R. Reduction of meningeal macrophages does not decrease migration of granulocytes into the CSF and brain parenchyma in experimental pneumococcal meningitis. J Neuroimmunol. 1999;99:205–10.PubMedCrossRef
8.
go back to reference Händle P, Dyckhoff-Shen S, Angele B, Gorka O, Pfister H-W, Gross O, Kirschning CJ, Klein M, Koedel U. Macrophage pyroptosis aggravates inflammation and pathology in murine pneumococcal meningitis. ECCMID 2020, Paris (Online) ID5155: 2022. Händle P, Dyckhoff-Shen S, Angele B, Gorka O, Pfister H-W, Gross O, Kirschning CJ, Klein M, Koedel U. Macrophage pyroptosis aggravates inflammation and pathology in murine pneumococcal meningitis. ECCMID 2020, Paris (Online) ID5155: 2022.
9.
go back to reference Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.PubMedPubMedCentralCrossRef Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.PubMedPubMedCentralCrossRef
10.
go back to reference Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38:291–304.PubMedCrossRef Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38:291–304.PubMedCrossRef
11.
go back to reference Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. Neurophotonics. 2022;9: 031914.PubMedPubMedCentralCrossRef Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. Neurophotonics. 2022;9: 031914.PubMedPubMedCentralCrossRef
12.
go back to reference Medina-Flores F, Hurtado-Alvarado G, Deli MA, Gomez-Gonzalez B. The active role of pericytes during neuroinflammation in the adult brain. Cell Mol Neurobiol. 2022;43:525.PubMedCrossRef Medina-Flores F, Hurtado-Alvarado G, Deli MA, Gomez-Gonzalez B. The active role of pericytes during neuroinflammation in the adult brain. Cell Mol Neurobiol. 2022;43:525.PubMedCrossRef
13.
go back to reference Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. 2021;36:633–43.PubMed Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. 2021;36:633–43.PubMed
14.
go back to reference Nyul-Toth A, Kozma M, Nagyoszi P, Nagy K, Fazakas C, Hasko J, Molnar K, Farkas AE, Vegh AG, Varo G, Galajda P, Wilhelm I, Krizbai IA. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun. 2017;64:220–31.PubMedCrossRef Nyul-Toth A, Kozma M, Nagyoszi P, Nagy K, Fazakas C, Hasko J, Molnar K, Farkas AE, Vegh AG, Varo G, Galajda P, Wilhelm I, Krizbai IA. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun. 2017;64:220–31.PubMedCrossRef
15.
go back to reference Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.PubMedPubMedCentralCrossRef Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.PubMedPubMedCentralCrossRef
16.
go back to reference Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550:1–8.PubMedCrossRef Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550:1–8.PubMedCrossRef
17.
go back to reference Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M, Futagami K, Yamauchi A, Dohgu S, Kataoka Y. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci Lett. 2014;578:133–8.PubMedCrossRef Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M, Futagami K, Yamauchi A, Dohgu S, Kataoka Y. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci Lett. 2014;578:133–8.PubMedCrossRef
18.
go back to reference Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 2013;1524:1–11.PubMedCrossRef Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 2013;1524:1–11.PubMedCrossRef
19.
go back to reference Kristensson K, Olsson Y. Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol Scand. 1973;49:189–94.PubMedCrossRef Kristensson K, Olsson Y. Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol Scand. 1973;49:189–94.PubMedCrossRef
20.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef
21.
go back to reference Villasenor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Gruninger F, Loetscher H, Freskgard PO, Collin L. Region-specific permeability of the blood-brain barrier upon pericyte loss. J Cereb Blood Flow Metab. 2017;37:3683–94.PubMedPubMedCentralCrossRef Villasenor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Gruninger F, Loetscher H, Freskgard PO, Collin L. Region-specific permeability of the blood-brain barrier upon pericyte loss. J Cereb Blood Flow Metab. 2017;37:3683–94.PubMedPubMedCentralCrossRef
22.
go back to reference Mäe MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Foo JC, Cazenave GA, Wenk M, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver D, Michael VM, Butcher EC, Keller A, Betsholtz C. Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res. 2021;128(4):e46–62.PubMedCrossRef Mäe MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Foo JC, Cazenave GA, Wenk M, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver D, Michael VM, Butcher EC, Keller A, Betsholtz C. Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res. 2021;128(4):e46–62.PubMedCrossRef
23.
go back to reference Caporarello N, Olivieri M, Cristaldi M, Scalia M, Toscano MA, Genovese C, Addamo A, Salmeri M, Lupo G, Anfuso CD. Blood-brain barrier in a haemophilus influenzae type a in vitro infection: role of adenosine receptors A2A and A2B. Mol Neurobiol. 2018;55(6):5321–36.PubMedCrossRef Caporarello N, Olivieri M, Cristaldi M, Scalia M, Toscano MA, Genovese C, Addamo A, Salmeri M, Lupo G, Anfuso CD. Blood-brain barrier in a haemophilus influenzae type a in vitro infection: role of adenosine receptors A2A and A2B. Mol Neurobiol. 2018;55(6):5321–36.PubMedCrossRef
24.
go back to reference Salmeri M, Motta C, Anfuso CD, Amodeo A, Scalia M, Toscano MA, Alberghina M, Lupo G. VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier. Cell Microbiol. 2013;15:1367–84.PubMedCrossRef Salmeri M, Motta C, Anfuso CD, Amodeo A, Scalia M, Toscano MA, Alberghina M, Lupo G. VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier. Cell Microbiol. 2013;15:1367–84.PubMedCrossRef
25.
go back to reference Gil E, Venturini C, Stirling D, Turner C, Tezera LB, Ercoli G, Baker T, Best K, Brown JS, Noursadeghi M. Pericyte derived chemokines amplify neutrophil recruitment across the cerebrovascular endothelial barrier. Front Immunol. 2022;13: 935798.PubMedPubMedCentralCrossRef Gil E, Venturini C, Stirling D, Turner C, Tezera LB, Ercoli G, Baker T, Best K, Brown JS, Noursadeghi M. Pericyte derived chemokines amplify neutrophil recruitment across the cerebrovascular endothelial barrier. Front Immunol. 2022;13: 935798.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Martens P, Worm SW, Lundgren B, Konradsen HB, Benfield T. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect Dis. 2004;4:21.PubMedPubMedCentralCrossRef Martens P, Worm SW, Lundgren B, Konradsen HB, Benfield T. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect Dis. 2004;4:21.PubMedPubMedCentralCrossRef
28.
go back to reference Müller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol. 2020;20:16.PubMedPubMedCentralCrossRef Müller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol. 2020;20:16.PubMedPubMedCentralCrossRef
29.
go back to reference Hathaway LJ, Grandgirard D, Valente LG, Tauber MG, Leib SL. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis. Open Biol. 2016;6(3): 150269.PubMedPubMedCentralCrossRef Hathaway LJ, Grandgirard D, Valente LG, Tauber MG, Leib SL. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis. Open Biol. 2016;6(3): 150269.PubMedPubMedCentralCrossRef
30.
go back to reference Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, Van der Ende A, Veening JW, Van de Beek D, Vandenbroucke-Grauls CM. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation. 2016;13:188.PubMedPubMedCentralCrossRef Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, Van der Ende A, Veening JW, Van de Beek D, Vandenbroucke-Grauls CM. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation. 2016;13:188.PubMedPubMedCentralCrossRef
31.
go back to reference Jim KK, Aprianto R, Koning R, Domenech A, Kurushima J, Van de Beek D, Vandenbroucke-Grauls CMJE, Bitter W, Veening JW. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep. 2022;41: 111851.PubMedPubMedCentralCrossRef Jim KK, Aprianto R, Koning R, Domenech A, Kurushima J, Van de Beek D, Vandenbroucke-Grauls CMJE, Bitter W, Veening JW. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep. 2022;41: 111851.PubMedPubMedCentralCrossRef
32.
go back to reference Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.PubMedCrossRef Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.PubMedCrossRef
33.
go back to reference Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. 2012;15(61):3781. Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. 2012;15(61):3781.
34.
go back to reference Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, Mochizuki N. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development. 2016;143:1328–39.PubMedPubMedCentral Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, Mochizuki N. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development. 2016;143:1328–39.PubMedPubMedCentral
35.
go back to reference Malipiero U, Koedel U, Pfister HW, Leveen P, Bürki K, Reith W, Fontana A. TGF receptor II gene deletion in leukocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 2006;129:2404–15.PubMedCrossRef Malipiero U, Koedel U, Pfister HW, Leveen P, Bürki K, Reith W, Fontana A. TGF receptor II gene deletion in leukocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 2006;129:2404–15.PubMedCrossRef
36.
go back to reference Woehrl B, Brouwer MC, Murr C, Heckenberg SG, Baas F, Pfister HW, Zwinderman AH, Morgan BP, Barnum SR, van der Ende A, Koedel U. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Clin Invest. 2011;121:3943–53.PubMedPubMedCentralCrossRef Woehrl B, Brouwer MC, Murr C, Heckenberg SG, Baas F, Pfister HW, Zwinderman AH, Morgan BP, Barnum SR, van der Ende A, Koedel U. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Clin Invest. 2011;121:3943–53.PubMedPubMedCentralCrossRef
37.
go back to reference Gerl K, Miquerol L, Todorov VT, Hugo CP, Adams RH, Kurtz A, Kurt B. Inducible glomerular erythropoietin production in the adult kidney. Kidney Intern. 2015;88:1345–55.CrossRef Gerl K, Miquerol L, Todorov VT, Hugo CP, Adams RH, Kurtz A, Kurt B. Inducible glomerular erythropoietin production in the adult kidney. Kidney Intern. 2015;88:1345–55.CrossRef
38.
go back to reference Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP. In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis. 2005;43:129–35.PubMedPubMedCentralCrossRef Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP. In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis. 2005;43:129–35.PubMedPubMedCentralCrossRef
39.
go back to reference Kaelin RE, Cai L, Li Y, Zhao D, Zhang H, Cheng J, Zhang W, Wu Y, Eisenhut K, Janssen P, Schmitt L, Enard W, Michels F, Flü C, Hou M, Kirchleitner SV, Siller S, Schiemann M, Andrä, Montanez E, Giachino C, Taylor V, Synowitz M, Tonn JC, von BL, Schulz C, Hellmann I, Glass R. TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression. Cell Syst. 2021;12:248–262. Kaelin RE, Cai L, Li Y, Zhao D, Zhang H, Cheng J, Zhang W, Wu Y, Eisenhut K, Janssen P, Schmitt L, Enard W, Michels F, Flü C, Hou M, Kirchleitner SV, Siller S, Schiemann M, Andrä, Montanez E, Giachino C, Taylor V, Synowitz M, Tonn JC, von BL, Schulz C, Hellmann I, Glass R. TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression. Cell Syst. 2021;12:248–262.
40.
go back to reference Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ. MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain. 2004;127:1437–45.PubMedCrossRef Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ. MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain. 2004;127:1437–45.PubMedCrossRef
41.
go back to reference Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, Paul G. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 2014;128:381–96.PubMedPubMedCentralCrossRef Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, Paul G. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 2014;128:381–96.PubMedPubMedCentralCrossRef
42.
go back to reference Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T, Yagi H, Matsuyama T, Nakagomi T. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13:57.PubMedPubMedCentralCrossRef Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T, Yagi H, Matsuyama T, Nakagomi T. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. 2016;13:57.PubMedPubMedCentralCrossRef
43.
go back to reference Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560:185–91.PubMedPubMedCentralCrossRef Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560:185–91.PubMedPubMedCentralCrossRef
44.
go back to reference Peng D, Ando K, Hussmann M, Gloger M, Skoczylas R, Mochizuki N, Betsholtz C, Fukuhara S, Schulte-Merker S, Lawson ND, Koltowska K. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. Elife. 2022;11: e74094.PubMedPubMedCentralCrossRef Peng D, Ando K, Hussmann M, Gloger M, Skoczylas R, Mochizuki N, Betsholtz C, Fukuhara S, Schulte-Merker S, Lawson ND, Koltowska K. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. Elife. 2022;11: e74094.PubMedPubMedCentralCrossRef
45.
go back to reference Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.PubMedCrossRef Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.PubMedCrossRef
46.
go back to reference Koedel U, Frankenberg T, Kirschnek S, Obermaier B, Hacker H, Paul R, Hacker G. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 2009;5: e1000461.PubMedPubMedCentralCrossRef Koedel U, Frankenberg T, Kirschnek S, Obermaier B, Hacker H, Paul R, Hacker G. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 2009;5: e1000461.PubMedPubMedCentralCrossRef
47.
go back to reference Engelen-Lee JY, Brouwer MC, Aronica E, Van de Beek D. Pneumococcal meningitis: clinical-pathological correlations (meningene-path). Acta Neuropathol Commun. 2016;4:26.PubMedPubMedCentralCrossRef Engelen-Lee JY, Brouwer MC, Aronica E, Van de Beek D. Pneumococcal meningitis: clinical-pathological correlations (meningene-path). Acta Neuropathol Commun. 2016;4:26.PubMedPubMedCentralCrossRef
48.
go back to reference Manaenko A, Chen H, Kammer J, Zhang JH, Tang J. Comparison Evans Blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 2011;195:206–10.PubMedCrossRef Manaenko A, Chen H, Kammer J, Zhang JH, Tang J. Comparison Evans Blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 2011;195:206–10.PubMedCrossRef
49.
50.
go back to reference Török O, Schreiner B, Schaffenrath J, Tsai HC, Maheshwari U, Stifter SA, Welsh C, Amorim A, Sridhar S, Utz SG, Mildenberger W, Nassiri S, Delorenzi M, Aguzzi A, Han MH, Greter M, Becher B, Keller A. Pericytes regulate vascular immune homeostasis in the CNS. Proc Natl Acad Sci U S A. 2021;118: e2016587118.PubMedPubMedCentralCrossRef Török O, Schreiner B, Schaffenrath J, Tsai HC, Maheshwari U, Stifter SA, Welsh C, Amorim A, Sridhar S, Utz SG, Mildenberger W, Nassiri S, Delorenzi M, Aguzzi A, Han MH, Greter M, Becher B, Keller A. Pericytes regulate vascular immune homeostasis in the CNS. Proc Natl Acad Sci U S A. 2021;118: e2016587118.PubMedPubMedCentralCrossRef
51.
go back to reference Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A. Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight. 2017;2: e90905.PubMedPubMedCentralCrossRef Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A. Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight. 2017;2: e90905.PubMedPubMedCentralCrossRef
52.
go back to reference Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2013;14:41–51.PubMedCrossRef Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2013;14:41–51.PubMedCrossRef
54.
go back to reference Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209:1219–34.PubMedPubMedCentralCrossRef Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209:1219–34.PubMedPubMedCentralCrossRef
55.
go back to reference Nikolakopoulou AM, Montagne A, Kisler K, Dai Z, Wang Y, Huuskonen MT, Sagare AP, Lazic D, Sweeney MD, Kong P, Wang M, Owens NC, Lawson EJ, Xie X, Zhao Z, Zlokovic BV. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci. 2019;22:1089–98.PubMedPubMedCentralCrossRef Nikolakopoulou AM, Montagne A, Kisler K, Dai Z, Wang Y, Huuskonen MT, Sagare AP, Lazic D, Sweeney MD, Kong P, Wang M, Owens NC, Lawson EJ, Xie X, Zhao Z, Zlokovic BV. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci. 2019;22:1089–98.PubMedPubMedCentralCrossRef
56.
go back to reference Ayloo S, Lazo CG, Sun S, Zhang W, Cui B, Gu C. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron. 2022;110:1641–55.PubMedPubMedCentralCrossRef Ayloo S, Lazo CG, Sun S, Zhang W, Cui B, Gu C. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron. 2022;110:1641–55.PubMedPubMedCentralCrossRef
57.
go back to reference Ding R, Hase Y, Ameen-Ali KE, Ndung’u M, Stevenson W, Barsby J, Gourlay R, Akinyemi T, Akinyemi R, Uemura MT, Polvikoski T, Mukaetova-Ladinska E, Ihara M, Kalaria RN. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30:1087–101.PubMedPubMedCentralCrossRef Ding R, Hase Y, Ameen-Ali KE, Ndung’u M, Stevenson W, Barsby J, Gourlay R, Akinyemi T, Akinyemi R, Uemura MT, Polvikoski T, Mukaetova-Ladinska E, Ihara M, Kalaria RN. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30:1087–101.PubMedPubMedCentralCrossRef
58.
go back to reference Liu Q, Radwanski R, Babadjouni R, Patel A, Hodis DM, Baumbacher P, Zhao Z, Zlokovic B, Mack WJ. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum. J Cereb Blood Flow Metab. 2019;39:240–50.PubMedCrossRef Liu Q, Radwanski R, Babadjouni R, Patel A, Hodis DM, Baumbacher P, Zhao Z, Zlokovic B, Mack WJ. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum. J Cereb Blood Flow Metab. 2019;39:240–50.PubMedCrossRef
59.
go back to reference Bhowmick S, D’Mello V, Caruso D, Wallerstein A, Abdul-Muneer PM. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol. 2019;317:260–70.PubMedCrossRef Bhowmick S, D’Mello V, Caruso D, Wallerstein A, Abdul-Muneer PM. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol. 2019;317:260–70.PubMedCrossRef
60.
go back to reference Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23:303–10.PubMedCrossRef Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23:303–10.PubMedCrossRef
61.
go back to reference Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:111–20.PubMedCrossRef Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:111–20.PubMedCrossRef
62.
go back to reference Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4:2932.PubMedCrossRef Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4:2932.PubMedCrossRef
63.
go back to reference Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol. 2009;29:309–16.PubMedCrossRef Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol. 2009;29:309–16.PubMedCrossRef
64.
go back to reference Dowell FJ, Hamilton CA, McMurray J, Reid JL. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings. J Cardiovasc Pharmacol. 1993;22:792–7.PubMedCrossRef Dowell FJ, Hamilton CA, McMurray J, Reid JL. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings. J Cardiovasc Pharmacol. 1993;22:792–7.PubMedCrossRef
65.
go back to reference Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun. 2001;69:845–52.PubMedCentralCrossRef Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun. 2001;69:845–52.PubMedCentralCrossRef
66.
go back to reference Paul R, Lorenzl S, Koedel U, Sporer B, Vogel U, Frosch M, Pfister H-W. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol. 1998;44:592–600.PubMedCrossRef Paul R, Lorenzl S, Koedel U, Sporer B, Vogel U, Frosch M, Pfister H-W. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol. 1998;44:592–600.PubMedCrossRef
67.
go back to reference Schaper M, Gergely S, Lykkesfeldt J, Zbaren J, Leib SL, Tauber MG, Christen S. Cerebral vasculature is the major target of oxidative protein alterations in bacterial meningitis. J Neuropathol Exp Neurol. 2002;61:605–13.PubMedCrossRef Schaper M, Gergely S, Lykkesfeldt J, Zbaren J, Leib SL, Tauber MG, Christen S. Cerebral vasculature is the major target of oxidative protein alterations in bacterial meningitis. J Neuropathol Exp Neurol. 2002;61:605–13.PubMedCrossRef
68.
go back to reference Vazquez-Liebanas E, Nahar K, Bertuzzi G, Keller A, Betsholtz C, Mäe MA. Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. J Cereb Blood Flow Metab. 2022;42:264–79.PubMedCrossRef Vazquez-Liebanas E, Nahar K, Bertuzzi G, Keller A, Betsholtz C, Mäe MA. Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. J Cereb Blood Flow Metab. 2022;42:264–79.PubMedCrossRef
69.
go back to reference Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 2018;136(4):507–23.PubMedPubMedCentralCrossRef Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 2018;136(4):507–23.PubMedPubMedCentralCrossRef
70.
go back to reference Tsai CM, Riestra AM, Ali SR, Fong JJ, Liu JZ, Hughes G, Varki A, Nizet V. Siglec-14 Enhances NLRP3-Inflammasome Activation in Macrophages. J Innate Immun. 2019;1–11. Tsai CM, Riestra AM, Ali SR, Fong JJ, Liu JZ, Hughes G, Varki A, Nizet V. Siglec-14 Enhances NLRP3-Inflammasome Activation in Macrophages. J Innate Immun. 2019;1–11.
71.
go back to reference Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FM, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17:797–805.PubMedPubMedCentralCrossRef Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FM, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17:797–805.PubMedPubMedCentralCrossRef
72.
go back to reference Schiavinato A, Przyklenk M, Kobbe B, Paulsson M, Wagener R. Collagen type VI is the antigen recognized by the ER-TR7 antibody. Eur J Immunol. 2021;51:2345–7.PubMedCrossRef Schiavinato A, Przyklenk M, Kobbe B, Paulsson M, Wagener R. Collagen type VI is the antigen recognized by the ER-TR7 antibody. Eur J Immunol. 2021;51:2345–7.PubMedCrossRef
Metadata
Title
Pericytes are protective in experimental pneumococcal meningitis through regulating leukocyte infiltration and blood–brain barrier function
Authors
Nina C. Teske
Susanne Dyckhoff-Shen
Paul Beckenbauer
Jan Philipp Bewersdorf
Joo-Yeon Engelen-Lee
Sven Hammerschmidt
Roland E. Kälin
Hans-Walter Pfister
Matthijs C. Brouwer
Matthias Klein
Rainer Glass
Diederik van de Beek
Uwe Koedel
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02938-z

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue