Skip to main content
Top
Published in: Inflammation 4/2020

01-08-2020 | Melanoma | Review

The Complexity of Targeting Chemokines to Promote a Tumor Immune Response

Authors: Marianne Strazza, Adam Mor

Published in: Inflammation | Issue 4/2020

Login to get access

Abstract

Immunotherapeutic treatment strategies greatly extend patient survival following malignant disease across a wide range of tumor types, including even those with metastatic disease. While diverse in approach, adoptive cell therapy, introduction of T cells that express chimeric antigen receptors, and checkpoint inhibitors all aim to re-invigorate the immune system to promote tumor cell identification and elimination. This review will focus on immune cell infiltration into tumors as well as a cellular organization within the tumor microenvironment as directed by the cell-specific expression patterns of chemokines and chemokine receptors. Through better understanding the chemokine network within tumors, we can uncover mechanisms to promote beneficial immune cell infiltration that can be combined with checkpoint inhibition. Conversely, chemokine expression is not limited to cells of the immune system, and it is understood that tumor cells also express chemokines and chemokine receptors. Tumor cells can hijack the chemokine networks to promote immune suppression and metastatic tumor cell trafficking. We will discuss the ways in which the chemokine network lies at the crossroad of immune evasion and tumor regression. Overall, this review will summarize key publications in the field of immune cell recruitment to tumors, highlight the dichotomous nature of chemokine interventions into cancer, and aims to identify therapeutic pathways forward.
Literature
4.
go back to reference Strazza, M., and A. Mor. 2017. Consider the chemokines: a review of the interplay between chemokines and T cell subset function. Discovery Medicine 24 (130): 31–39.PubMedPubMedCentral Strazza, M., and A. Mor. 2017. Consider the chemokines: a review of the interplay between chemokines and T cell subset function. Discovery Medicine 24 (130): 31–39.PubMedPubMedCentral
8.
go back to reference Strazza, M., I. Azoulay-Alfaguter, G.J. Silverman, and A. Mor. 2015. T cell chemokine receptor patterns as pathogenic signatures in autoimmunity. Discovery Medicine 19 (103): 117–125.PubMed Strazza, M., I. Azoulay-Alfaguter, G.J. Silverman, and A. Mor. 2015. T cell chemokine receptor patterns as pathogenic signatures in autoimmunity. Discovery Medicine 19 (103): 117–125.PubMed
10.
go back to reference Ascierto, P.A., K.D. Lewis, A.M. Di Giacomo, L. Demidov, M. Mandala, I. Bondarenko, C. Herbert, et al. 2020. Prognostic impact of baseline tumour immune infiltrate on disease-free survival in patients with completely resected, BRAF(v600) mutation-positive melanoma receiving adjuvant vemurafenib. Annals of Oncology 31 (1): 153–159. https://doi.org/10.1016/j.annonc.2019.10.002.CrossRefPubMed Ascierto, P.A., K.D. Lewis, A.M. Di Giacomo, L. Demidov, M. Mandala, I. Bondarenko, C. Herbert, et al. 2020. Prognostic impact of baseline tumour immune infiltrate on disease-free survival in patients with completely resected, BRAF(v600) mutation-positive melanoma receiving adjuvant vemurafenib. Annals of Oncology 31 (1): 153–159. https://​doi.​org/​10.​1016/​j.​annonc.​2019.​10.​002.CrossRefPubMed
11.
go back to reference Herbst, R.S., J.C. Soria, M. Kowanetz, G.D. Fine, O. Hamid, M.S. Gordon, J.A. Sosman, D. McDermott, J.D. Powderly, S.N. Gettinger, H.E. Kohrt, L. Horn, D.P. Lawrence, S. Rost, M. Leabman, Y. Xiao, A. Mokatrin, H. Koeppen, P.S. Hegde, I. Mellman, D.S. Chen, and F.S. Hodi. 2014. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515 (7528): 563–567. https://doi.org/10.1038/nature14011.CrossRefPubMedPubMedCentral Herbst, R.S., J.C. Soria, M. Kowanetz, G.D. Fine, O. Hamid, M.S. Gordon, J.A. Sosman, D. McDermott, J.D. Powderly, S.N. Gettinger, H.E. Kohrt, L. Horn, D.P. Lawrence, S. Rost, M. Leabman, Y. Xiao, A. Mokatrin, H. Koeppen, P.S. Hegde, I. Mellman, D.S. Chen, and F.S. Hodi. 2014. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515 (7528): 563–567. https://​doi.​org/​10.​1038/​nature14011.CrossRefPubMedPubMedCentral
19.
go back to reference Bilusic, M., C.R. Heery, J.M. Collins, R.N. Donahue, C. Palena, R.A. Madan, F. Karzai, J.L. Marté, J. Strauss, M.E. Gatti-Mays, J. Schlom, and J.L. Gulley. 2019. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer 7 (1): 240. https://doi.org/10.1186/s40425-019-0706-x.CrossRefPubMedPubMedCentral Bilusic, M., C.R. Heery, J.M. Collins, R.N. Donahue, C. Palena, R.A. Madan, F. Karzai, J.L. Marté, J. Strauss, M.E. Gatti-Mays, J. Schlom, and J.L. Gulley. 2019. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer 7 (1): 240. https://​doi.​org/​10.​1186/​s40425-019-0706-x.CrossRefPubMedPubMedCentral
20.
22.
go back to reference Li, F., S. Kitajima, S. Kohno, A. Yoshida, S. Tange, S. Sasaki, N. Okada, Y. Nishimoto, H. Muranaka, N. Nagatani, M. Suzuki, S. Masuda, T.C. Thai, T. Nishiuchi, T. Tanaka, D.A. Barbie, N. Mukaida, and C. Takahashi. 2019. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Research 79 (15): 3903–3915. https://doi.org/10.1158/0008-5472.CAN-18-3604.CrossRefPubMed Li, F., S. Kitajima, S. Kohno, A. Yoshida, S. Tange, S. Sasaki, N. Okada, Y. Nishimoto, H. Muranaka, N. Nagatani, M. Suzuki, S. Masuda, T.C. Thai, T. Nishiuchi, T. Tanaka, D.A. Barbie, N. Mukaida, and C. Takahashi. 2019. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Research 79 (15): 3903–3915. https://​doi.​org/​10.​1158/​0008-5472.​CAN-18-3604.CrossRefPubMed
23.
go back to reference Peng, W., J.Q. Chen, C. Liu, S. Malu, C. Creasy, M.T. Tetzlaff, C. Xu, J. McKenzie, C. Zhang, X. Liang, L.J. Williams, W. Deng, G. Chen, R. Mbofung, A.J. Lazar, C.A. Torres-Cabala, Z.A. Cooper, P.L. Chen, T.N. Tieu, S. Spranger, X. Yu, C. Bernatchez, M.A. Forget, C. Haymaker, R. Amaria, J. McQuade, I.C. Glitza, T. Cascone, H.S. Li, L.N. Kwong, T.P. Heffernan, J. Hu, Bassett RL Jr, M.W. Bosenberg, S.E. Woodman, W.W. Overwijk, G. Lizée, J. Roszik, T.F. Gajewski, J.A. Wargo, J.E. Gershenwald, L. Radvanyi, M.A. Davies, and P. Hwu. 2016. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discovery 6 (2): 202–216. https://doi.org/10.1158/2159-8290.CD-15-0283.CrossRefPubMed Peng, W., J.Q. Chen, C. Liu, S. Malu, C. Creasy, M.T. Tetzlaff, C. Xu, J. McKenzie, C. Zhang, X. Liang, L.J. Williams, W. Deng, G. Chen, R. Mbofung, A.J. Lazar, C.A. Torres-Cabala, Z.A. Cooper, P.L. Chen, T.N. Tieu, S. Spranger, X. Yu, C. Bernatchez, M.A. Forget, C. Haymaker, R. Amaria, J. McQuade, I.C. Glitza, T. Cascone, H.S. Li, L.N. Kwong, T.P. Heffernan, J. Hu, Bassett RL Jr, M.W. Bosenberg, S.E. Woodman, W.W. Overwijk, G. Lizée, J. Roszik, T.F. Gajewski, J.A. Wargo, J.E. Gershenwald, L. Radvanyi, M.A. Davies, and P. Hwu. 2016. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discovery 6 (2): 202–216. https://​doi.​org/​10.​1158/​2159-8290.​CD-15-0283.CrossRefPubMed
24.
go back to reference Huang, H., E. Langenkamp, M. Georganaki, A. Loskog, P.F. Fuchs, L.C. Dieterich, J. Kreuger, and A. Dimberg. 2015. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. FASEB Journal 29 (1): 227–238. https://doi.org/10.1096/fj.14-250985.CrossRefPubMed Huang, H., E. Langenkamp, M. Georganaki, A. Loskog, P.F. Fuchs, L.C. Dieterich, J. Kreuger, and A. Dimberg. 2015. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. FASEB Journal 29 (1): 227–238. https://​doi.​org/​10.​1096/​fj.​14-250985.CrossRefPubMed
26.
go back to reference Zsiros, E., P. Duttagupta, D. Dangaj, H. Li, R. Frank, T. Garrabrant, I.S. Hagemann, B.L. Levine, C.H. June, L. Zhang, E. Wang, F.M. Marincola, D. Bedognetti, Powell DJ Jr, J. Tanyi, M.D. Feldman, L.E. Kandalaft, and G. Coukos. 2015. The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy. Clinical Cancer Research 21 (12): 2840–2850. https://doi.org/10.1158/1078-0432.CCR-14-2777.CrossRefPubMedPubMedCentral Zsiros, E., P. Duttagupta, D. Dangaj, H. Li, R. Frank, T. Garrabrant, I.S. Hagemann, B.L. Levine, C.H. June, L. Zhang, E. Wang, F.M. Marincola, D. Bedognetti, Powell DJ Jr, J. Tanyi, M.D. Feldman, L.E. Kandalaft, and G. Coukos. 2015. The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy. Clinical Cancer Research 21 (12): 2840–2850. https://​doi.​org/​10.​1158/​1078-0432.​CCR-14-2777.CrossRefPubMedPubMedCentral
29.
go back to reference Dangaj, D., M. Bruand, A.J. Grimm, C. Ronet, D. Barras, P.A. Duttagupta, E. Lanitis, J. Duraiswamy, J.L. Tanyi, F. Benencia, J. Conejo-Garcia, H.R. Ramay, K.T. Montone, Powell DJ Jr, P.A. Gimotty, A. Facciabene, D.G. Jackson, J.S. Weber, S.J. Rodig, S.F. Hodi, L.E. Kandalaft, M. Irving, L. Zhang, P. Foukas, S. Rusakiewicz, M. Delorenzi, and G. Coukos. 2019. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35 (6): 885–900 e810. https://doi.org/10.1016/j.ccell.2019.05.004.CrossRefPubMedPubMedCentral Dangaj, D., M. Bruand, A.J. Grimm, C. Ronet, D. Barras, P.A. Duttagupta, E. Lanitis, J. Duraiswamy, J.L. Tanyi, F. Benencia, J. Conejo-Garcia, H.R. Ramay, K.T. Montone, Powell DJ Jr, P.A. Gimotty, A. Facciabene, D.G. Jackson, J.S. Weber, S.J. Rodig, S.F. Hodi, L.E. Kandalaft, M. Irving, L. Zhang, P. Foukas, S. Rusakiewicz, M. Delorenzi, and G. Coukos. 2019. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35 (6): 885–900 e810. https://​doi.​org/​10.​1016/​j.​ccell.​2019.​05.​004.CrossRefPubMedPubMedCentral
30.
go back to reference Mikucki, M.E., D.T. Fisher, J. Matsuzaki, J.J. Skitzki, N.B. Gaulin, J.B. Muhitch, A.W. Ku, J.G. Frelinger, K. Odunsi, T.F. Gajewski, A.D. Luster, and S.S. Evans. 2015. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nature Communications 6: 7458. https://doi.org/10.1038/ncomms8458.CrossRefPubMed Mikucki, M.E., D.T. Fisher, J. Matsuzaki, J.J. Skitzki, N.B. Gaulin, J.B. Muhitch, A.W. Ku, J.G. Frelinger, K. Odunsi, T.F. Gajewski, A.D. Luster, and S.S. Evans. 2015. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nature Communications 6: 7458. https://​doi.​org/​10.​1038/​ncomms8458.CrossRefPubMed
34.
go back to reference Jin, L., H. Tao, A. Karachi, Y. Long, A.Y. Hou, M. Na, K.A. Dyson, A.J. Grippin, L.P. Deleyrolle, W. Zhang, D.A. Rajon, Q.J. Wang, J.C. Yang, J.L. Kresak, E.J. Sayour, M. Rahman, F.J. Bova, Z. Lin, D.A. Mitchell, and J. Huang. 2019. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nature Communications 10 (1): 4016. https://doi.org/10.1038/s41467-019-11869-4.CrossRefPubMedPubMedCentral Jin, L., H. Tao, A. Karachi, Y. Long, A.Y. Hou, M. Na, K.A. Dyson, A.J. Grippin, L.P. Deleyrolle, W. Zhang, D.A. Rajon, Q.J. Wang, J.C. Yang, J.L. Kresak, E.J. Sayour, M. Rahman, F.J. Bova, Z. Lin, D.A. Mitchell, and J. Huang. 2019. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nature Communications 10 (1): 4016. https://​doi.​org/​10.​1038/​s41467-019-11869-4.CrossRefPubMedPubMedCentral
35.
go back to reference Whilding, L.M., L. Halim, B. Draper, A.C. Parente-Pereira, T. Zabinski, D.M. Davies, and J. Maher. 2019. CAR T-cells targeting the integrin alphavbeta6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers 11 (5). https://doi.org/10.3390/cancers11050674. Whilding, L.M., L. Halim, B. Draper, A.C. Parente-Pereira, T. Zabinski, D.M. Davies, and J. Maher. 2019. CAR T-cells targeting the integrin alphavbeta6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers 11 (5). https://​doi.​org/​10.​3390/​cancers11050674.
37.
go back to reference Rosenberg, S.A., J.C. Yang, R.M. Sherry, U.S. Kammula, M.S. Hughes, G.Q. Phan, D.E. Citrin, N.P. Restifo, P.F. Robbins, J.R. Wunderlich, K.E. Morton, C.M. Laurencot, S.M. Steinberg, D.E. White, and M.E. Dudley. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical Cancer Research 17 (13): 4550–4557. https://doi.org/10.1158/1078-0432.CCR-11-0116.CrossRefPubMedPubMedCentral Rosenberg, S.A., J.C. Yang, R.M. Sherry, U.S. Kammula, M.S. Hughes, G.Q. Phan, D.E. Citrin, N.P. Restifo, P.F. Robbins, J.R. Wunderlich, K.E. Morton, C.M. Laurencot, S.M. Steinberg, D.E. White, and M.E. Dudley. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical Cancer Research 17 (13): 4550–4557. https://​doi.​org/​10.​1158/​1078-0432.​CCR-11-0116.CrossRefPubMedPubMedCentral
39.
go back to reference Sapoznik, S., R. Ortenberg, G. Galore-Haskel, S. Kozlovski, D. Levy, C. Avivi, I. Barshack, C.J. Cohen, M.J. Besser, J. Schachter, and G. Markel. 2012. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunology, Immunotherapy 61 (10): 1833–1847. https://doi.org/10.1007/s00262-012-1245-1.CrossRefPubMed Sapoznik, S., R. Ortenberg, G. Galore-Haskel, S. Kozlovski, D. Levy, C. Avivi, I. Barshack, C.J. Cohen, M.J. Besser, J. Schachter, and G. Markel. 2012. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunology, Immunotherapy 61 (10): 1833–1847. https://​doi.​org/​10.​1007/​s00262-012-1245-1.CrossRefPubMed
45.
go back to reference Gattinoni, L., E. Lugli, Y. Ji, Z. Pos, C.M. Paulos, M.F. Quigley, J.R. Almeida, E. Gostick, Z. Yu, C. Carpenito, E. Wang, D.C. Douek, D.A. Price, C.H. June, F.M. Marincola, M. Roederer, and N.P. Restifo. 2011. A human memory T cell subset with stem cell-like properties. Nature Medicine 17 (10): 1290–1297. https://doi.org/10.1038/nm.2446.CrossRefPubMedPubMedCentral Gattinoni, L., E. Lugli, Y. Ji, Z. Pos, C.M. Paulos, M.F. Quigley, J.R. Almeida, E. Gostick, Z. Yu, C. Carpenito, E. Wang, D.C. Douek, D.A. Price, C.H. June, F.M. Marincola, M. Roederer, and N.P. Restifo. 2011. A human memory T cell subset with stem cell-like properties. Nature Medicine 17 (10): 1290–1297. https://​doi.​org/​10.​1038/​nm.​2446.CrossRefPubMedPubMedCentral
49.
go back to reference Lesokhin, A.M., T.M. Hohl, S. Kitano, C. Cortez, D. Hirschhorn-Cymerman, F. Avogadri, G.A. Rizzuto, J.J. Lazarus, E.G. Pamer, A.N. Houghton, T. Merghoub, and J.D. Wolchok. 2012. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Research 72 (4): 876–886. https://doi.org/10.1158/0008-5472.CAN-11-1792.CrossRefPubMed Lesokhin, A.M., T.M. Hohl, S. Kitano, C. Cortez, D. Hirschhorn-Cymerman, F. Avogadri, G.A. Rizzuto, J.J. Lazarus, E.G. Pamer, A.N. Houghton, T. Merghoub, and J.D. Wolchok. 2012. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Research 72 (4): 876–886. https://​doi.​org/​10.​1158/​0008-5472.​CAN-11-1792.CrossRefPubMed
55.
go back to reference Zeng, Y., B. Li, Y. Liang, P.M. Reeves, X. Qu, C. Ran, Q. Liu, M.V. Callahan, A.E. Sluder, J.A. Gelfand, H. Chen, and M.C. Poznansky. 2019. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB Journal 33 (5): 6596–6608. https://doi.org/10.1096/fj.201802067RR.CrossRefPubMedPubMedCentral Zeng, Y., B. Li, Y. Liang, P.M. Reeves, X. Qu, C. Ran, Q. Liu, M.V. Callahan, A.E. Sluder, J.A. Gelfand, H. Chen, and M.C. Poznansky. 2019. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB Journal 33 (5): 6596–6608. https://​doi.​org/​10.​1096/​fj.​201802067RR.CrossRefPubMedPubMedCentral
57.
go back to reference Wu, A., R. Maxwell, Y. Xia, P. Cardarelli, M. Oyasu, Z. Belcaid, E. Kim, A. Hung, A.S. Luksik, T. Garzon-Muvdi, C.M. Jackson, D. Mathios, D. Theodros, J. Cogswell, H. Brem, D.M. Pardoll, and M. Lim. 2019. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. Journal of Neuro-Oncology 143 (2): 241–249. https://doi.org/10.1007/s11060-019-03172-5.CrossRefPubMed Wu, A., R. Maxwell, Y. Xia, P. Cardarelli, M. Oyasu, Z. Belcaid, E. Kim, A. Hung, A.S. Luksik, T. Garzon-Muvdi, C.M. Jackson, D. Mathios, D. Theodros, J. Cogswell, H. Brem, D.M. Pardoll, and M. Lim. 2019. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. Journal of Neuro-Oncology 143 (2): 241–249. https://​doi.​org/​10.​1007/​s11060-019-03172-5.CrossRefPubMed
Metadata
Title
The Complexity of Targeting Chemokines to Promote a Tumor Immune Response
Authors
Marianne Strazza
Adam Mor
Publication date
01-08-2020
Publisher
Springer US
Keywords
Melanoma
Melanoma
Published in
Inflammation / Issue 4/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01235-8

Other articles of this Issue 4/2020

Inflammation 4/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.