Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Melanoma | Research

High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients

Authors: Yasaman Rezaie, Fahimeh Fattahi, Baharnaz Mashinchi, Kambiz Kamyab Hesari, Sahar Montazeri, Elham Kalantari, Zahra Madjd, Leili Saeednejad Zanjani

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors.

Methods

Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed.

Results

Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients.

Conclusion

Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aggarwal P, Knabel P, Fleischer AB Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol. 2021;85(2):388–95.PubMedCrossRef Aggarwal P, Knabel P, Fleischer AB Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol. 2021;85(2):388–95.PubMedCrossRef
2.
go back to reference Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: a longitudinal analysis from the global burden of Disease Study, 1990–2017. JAAD Int. 2021;2:98–108.PubMedPubMedCentralCrossRef Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: a longitudinal analysis from the global burden of Disease Study, 1990–2017. JAAD Int. 2021;2:98–108.PubMedPubMedCentralCrossRef
3.
go back to reference Lomas A, Leonardi-Bee J, Bath‐Hextall FJBJoD. A systematic review of worldwide incidence of nonmelanoma skin cancer. 2012;166(5):1069–80. Lomas A, Leonardi-Bee J, Bath‐Hextall FJBJoD. A systematic review of worldwide incidence of nonmelanoma skin cancer. 2012;166(5):1069–80.
4.
go back to reference Ward WH, Farma JM. Cutaneous melanoma: etiology and therapy [Internet]. 2017. Ward WH, Farma JM. Cutaneous melanoma: etiology and therapy [Internet]. 2017.
5.
go back to reference Bolick NL, Geller AC. Epidemiology of melanoma. Hematology/Oncology Clin. 2021;35(1):57–72.CrossRef Bolick NL, Geller AC. Epidemiology of melanoma. Hematology/Oncology Clin. 2021;35(1):57–72.CrossRef
6.
go back to reference Lai V, Cranwell W, Sinclair RJCid. Epidemiol skin cancer mature patient. 2018;36(2):167–76. Lai V, Cranwell W, Sinclair RJCid. Epidemiol skin cancer mature patient. 2018;36(2):167–76.
7.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal AJCacjfc. Cancer statistics, 2022. 2022. Siegel RL, Miller KD, Fuchs HE, Jemal AJCacjfc. Cancer statistics, 2022. 2022.
8.
go back to reference Aggarwal P, Knabel P, Fleischer Jr, ABJJotAAoD. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. 2021;85(2):388–95. Aggarwal P, Knabel P, Fleischer Jr, ABJJotAAoD. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. 2021;85(2):388–95.
9.
go back to reference Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GRJJi. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. 2021;2:98–108. Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GRJJi. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017. 2021;2:98–108.
10.
go back to reference Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, et al. Why is melanoma so metastatic? Pigment cell & melanoma research. 2014;27(1):19–36.CrossRef Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, et al. Why is melanoma so metastatic? Pigment cell & melanoma research. 2014;27(1):19–36.CrossRef
12.
go back to reference Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson JJCe. Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe–a systematic review of the literature. 2016;8:109. Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson JJCe. Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe–a systematic review of the literature. 2016;8:109.
13.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedPubMedCentralCrossRef Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedPubMedCentralCrossRef
14.
go back to reference Long GV, Stroyakovskiy D, Gogas H, Levchenko E, De Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. The Lancet. 2015;386(9992):444–51.CrossRef Long GV, Stroyakovskiy D, Gogas H, Levchenko E, De Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. The Lancet. 2015;386(9992):444–51.CrossRef
15.
go back to reference Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.PubMedCrossRef Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.PubMedCrossRef
16.
go back to reference Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol. 2014;7(6):13–24.PubMedPubMedCentral Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol. 2014;7(6):13–24.PubMedPubMedCentral
17.
go back to reference Bridge JA, Lee JC, Daud A, Wells JW. Bluestone JAJFim. Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin cancer. 2018;5:351. Bridge JA, Lee JC, Daud A, Wells JW. Bluestone JAJFim. Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin cancer. 2018;5:351.
18.
go back to reference Pandey SN. Skin Cancer: molecular biomarker for diagnosis, prognosis, Prevention, and targeted therapy. Skin Cancer: Pathogenesis and Diagnosis: Springer; 2021. pp. 101–30. Pandey SN. Skin Cancer: molecular biomarker for diagnosis, prognosis, Prevention, and targeted therapy. Skin Cancer: Pathogenesis and Diagnosis: Springer; 2021. pp. 101–30.
19.
go back to reference Tonella L, Pala V, Ponti R, Rubatto M, Gallo G, Mastorino L et al. Prognostic and predictive biomarkers in stage iii melanoma: Current insights and clinical implications. 2021;22(9):4561. Tonella L, Pala V, Ponti R, Rubatto M, Gallo G, Mastorino L et al. Prognostic and predictive biomarkers in stage iii melanoma: Current insights and clinical implications. 2021;22(9):4561.
20.
go back to reference Mårtenson ED, Hansson L, Nilsson B, Von Schoultz E, Brahme EM, Ringborg U et al. Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. 2001;19(3):824–31. Mårtenson ED, Hansson L, Nilsson B, Von Schoultz E, Brahme EM, Ringborg U et al. Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. 2001;19(3):824–31.
21.
go back to reference Nayal A, Webb DJ. Horwitz AFJCoicb. Talin: an emerging focal point of adhesion dynamics. 2004;16(1):94 – 8. Nayal A, Webb DJ. Horwitz AFJCoicb. Talin: an emerging focal point of adhesion dynamics. 2004;16(1):94 – 8.
22.
go back to reference Critchley DJBST. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. 2004;32(5):831–6. Critchley DJBST. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. 2004;32(5):831–6.
23.
go back to reference Haining AWM, Rahikainen R, Cortes E, Lachowski D, Rice A, von Essen M, et al. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol. 2018;16(7):e2005599.PubMedPubMedCentralCrossRef Haining AWM, Rahikainen R, Cortes E, Lachowski D, Rice A, von Essen M, et al. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol. 2018;16(7):e2005599.PubMedPubMedCentralCrossRef
24.
go back to reference Zacharchenko T, Qian X, Goult BT, Jethwa D, Almeida TB, Ballestrem C, et al. LD motif recognition by talin: structure of the talin-DLC1 complex. Structure. 2016;24(7):1130–41.PubMedPubMedCentralCrossRef Zacharchenko T, Qian X, Goult BT, Jethwa D, Almeida TB, Ballestrem C, et al. LD motif recognition by talin: structure of the talin-DLC1 complex. Structure. 2016;24(7):1130–41.PubMedPubMedCentralCrossRef
25.
go back to reference Sun Z, Tseng H-Y, Tan S, Senger F, Kurzawa L, Dedden D, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nat Cell Biol. 2016;18(9):941–53.PubMedPubMedCentralCrossRef Sun Z, Tseng H-Y, Tan S, Senger F, Kurzawa L, Dedden D, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nat Cell Biol. 2016;18(9):941–53.PubMedPubMedCentralCrossRef
26.
go back to reference Chakraborty S, Banerjee S, Raina M, Haldar SJB. Force-directed “mechanointeractome. of Talin–Integrin. 2019;58(47):4677–95. Chakraborty S, Banerjee S, Raina M, Haldar SJB. Force-directed “mechanointeractome. of Talin–Integrin. 2019;58(47):4677–95.
27.
go back to reference Yao M, Goult BT, Klapholz B, Hu X, Toseland CP, Guo Y, et al. Mech response talin. 2016;7(1):1–11. Yao M, Goult BT, Klapholz B, Hu X, Toseland CP, Guo Y, et al. Mech response talin. 2016;7(1):1–11.
28.
go back to reference Haining AW, Lieberthal TJ, Hernández AdRJTFJ. Talin: a mechanosensitive molecule in health and disease. 2016;30(6):2073–85. Haining AW, Lieberthal TJ, Hernández AdRJTFJ. Talin: a mechanosensitive molecule in health and disease. 2016;30(6):2073–85.
29.
go back to reference Critchley DR. Gingras ARJJocs. Talin at a glance. 2008;121(9):1345–7. Critchley DR. Gingras ARJJocs. Talin at a glance. 2008;121(9):1345–7.
30.
go back to reference Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol. 2015;16(8):486–98.PubMedPubMedCentralCrossRef Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol. 2015;16(8):486–98.PubMedPubMedCentralCrossRef
31.
go back to reference Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M. Turnover of focal adhesions and cancer cell migration. International journal of cell biology. 2012;2012. Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M. Turnover of focal adhesions and cancer cell migration. International journal of cell biology. 2012;2012.
32.
go back to reference Kaiser HW, Ness W, Offers M, O’Keefe EJ. Kreysel HWJJoid. Talin: adherens junction protein is localized at the epidermal-dermal interface in skin. 1993;101(6):789 – 93. Kaiser HW, Ness W, Offers M, O’Keefe EJ. Kreysel HWJJoid. Talin: adherens junction protein is localized at the epidermal-dermal interface in skin. 1993;101(6):789 – 93.
33.
go back to reference Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, et al. The leaden gene product is required with Rab27a to recruit myosin va to melanosomes in melanocytes. Traffic. 2002;3(3):193–202.PubMedCrossRef Hume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, et al. The leaden gene product is required with Rab27a to recruit myosin va to melanosomes in melanocytes. Traffic. 2002;3(3):193–202.PubMedCrossRef
34.
go back to reference Jevnikar Z, Rojnik M, Jamnik P, Doljak B, Fonović UP, Kos JJJoBC. Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells. 2013;288(4):2201–9. Jevnikar Z, Rojnik M, Jamnik P, Doljak B, Fonović UP, Kos JJJoBC. Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells. 2013;288(4):2201–9.
35.
go back to reference Lai MT, Hua CH, Tsai MH, Wan L, Lin YJ, Chen CM et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. 2011;224(3):367 – 76. Lai MT, Hua CH, Tsai MH, Wan L, Lin YJ, Chen CM et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. 2011;224(3):367 – 76.
36.
go back to reference Fang K-P, Zhang J-L, Ren Y-H, Qian Y-B. Talin-1 correlates with reduced invasion and migration in human hepatocellular carcinoma cells. Asian Pac J Cancer Prev. 2014;15(6):2655–61.PubMedCrossRef Fang K-P, Zhang J-L, Ren Y-H, Qian Y-B. Talin-1 correlates with reduced invasion and migration in human hepatocellular carcinoma cells. Asian Pac J Cancer Prev. 2014;15(6):2655–61.PubMedCrossRef
37.
go back to reference Yan H, Guo M, Zou J, Xiao F, Yi L, He Y, et al. Promotive effect of Talin-1 protein on gastric cancer progression through PTK2‐PXN‐VCL‐E‐Cadherin‐CAPN2‐MAPK1 signaling axis. J Clin Lab Anal. 2020;34(12):e23555.PubMedPubMedCentralCrossRef Yan H, Guo M, Zou J, Xiao F, Yi L, He Y, et al. Promotive effect of Talin-1 protein on gastric cancer progression through PTK2‐PXN‐VCL‐E‐Cadherin‐CAPN2‐MAPK1 signaling axis. J Clin Lab Anal. 2020;34(12):e23555.PubMedPubMedCentralCrossRef
38.
go back to reference Xu Y-F, Ren X-Y, Li Y-Q, He Q-M, Tang X-R, Sun Y, et al. High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer. 2015;15(1):1–10.CrossRef Xu Y-F, Ren X-Y, Li Y-Q, He Q-M, Tang X-R, Sun Y, et al. High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer. 2015;15(1):1–10.CrossRef
39.
go back to reference Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):1–18.CrossRef Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):1–18.CrossRef
40.
go back to reference Xu N, Chen H-J, Chen S-H, Xue X-Y, Chen H, Zheng Q-S et al. Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer. 2016;95(29). Xu N, Chen H-J, Chen S-H, Xue X-Y, Chen H, Zheng Q-S et al. Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer. 2016;95(29).
41.
go back to reference Bostanci O, Kemik O, Kemik A, Battal M, Demir U, Purisa S, et al. A novel screening test for colon cancer. Talin-1. 2014;18(17):2533–7. Bostanci O, Kemik O, Kemik A, Battal M, Demir U, Purisa S, et al. A novel screening test for colon cancer. Talin-1. 2014;18(17):2533–7.
42.
go back to reference Xu Y-F, Ren X-Y, Li Y-Q, He Q-M, Tang X-R, Sun Y et al. High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. 2015;15(1):1–10. Xu Y-F, Ren X-Y, Li Y-Q, He Q-M, Tang X-R, Sun Y et al. High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. 2015;15(1):1–10.
43.
go back to reference Ji L, Jiang F, Cui X. Qin CJOl. Talin1 knockdown prohibits the proliferation and migration of colorectal cancer cells via the EMT signaling pathway Retraction in/10.3892/ol. 2021.12943. 2019;18(5):5408-16. Ji L, Jiang F, Cui X. Qin CJOl. Talin1 knockdown prohibits the proliferation and migration of colorectal cancer cells via the EMT signaling pathway Retraction in/10.3892/ol. 2021.12943. 2019;18(5):5408-16.
44.
go back to reference Sakamoto S, McCann RO, Dhir R. Kyprianou NJCr. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. 2010;70(5):1885-95. Sakamoto S, McCann RO, Dhir R. Kyprianou NJCr. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. 2010;70(5):1885-95.
45.
go back to reference Duraiyan J, Govindarajan R, Kaliyappan K. Palanisamy MJJop, sciences b. Appl Immunohistochem. 2012;4(Suppl 2):307. Duraiyan J, Govindarajan R, Kaliyappan K. Palanisamy MJJop, sciences b. Appl Immunohistochem. 2012;4(Suppl 2):307.
46.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W60.PubMedPubMedCentralCrossRef Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W60.PubMedPubMedCentralCrossRef
47.
go back to reference Park S-J, Yoon B-H, Kim S-K, Kim S-Y. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genom. 2019;12(5):101.CrossRef Park S-J, Yoon B-H, Kim S-K, Kim S-Y. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genom. 2019;12(5):101.CrossRef
48.
go back to reference Goldman M, Craft B, Hastie M, Repečka K, Kamath A, McDade F et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation.bioRxiv. 2019:326470. Goldman M, Craft B, Hastie M, Repečka K, Kamath A, McDade F et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation.bioRxiv. 2019:326470.
49.
go back to reference Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL. Balch. AJCC Cancer Staging Manual (8th edition): Springer International Publishing: American Joint Commission on Cancer; 2017 Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL. Balch. AJCC Cancer Staging Manual (8th edition): Springer International Publishing: American Joint Commission on Cancer; 2017
50.
go back to reference Kallioniemi O-P, Wagner U, Kononen J, Sauter GJHmg. Tissue microarray technology for high-throughput molecular profiling of cancer. 2001;10(7):657–62. Kallioniemi O-P, Wagner U, Kononen J, Sauter GJHmg. Tissue microarray technology for high-throughput molecular profiling of cancer. 2001;10(7):657–62.
51.
go back to reference Fedor HL, Marzo AMDJPC. Practical methods for tissue microarray construction. 2005:89–101. Fedor HL, Marzo AMDJPC. Practical methods for tissue microarray construction. 2005:89–101.
52.
go back to reference Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KRJAjopm. Prevalence and costs of skin cancer treatment in the US, 2002 – 2006 and 2007 – 2011. 2015;48(2):183–7. Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KRJAjopm. Prevalence and costs of skin cancer treatment in the US, 2002 – 2006 and 2007 – 2011. 2015;48(2):183–7.
53.
go back to reference Kuphal S, Bauer R, Bosserhoff A-K. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):195–222.PubMedCrossRef Kuphal S, Bauer R, Bosserhoff A-K. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):195–222.PubMedCrossRef
54.
go back to reference Zhao Y, Lykov N, Tzeng CJIJoMM. Talin–1 interaction network in cellular mechanotransduction. 2022;49(5):1–12. Zhao Y, Lykov N, Tzeng CJIJoMM. Talin–1 interaction network in cellular mechanotransduction. 2022;49(5):1–12.
55.
go back to reference Helige C, Hofmann-Wellenhof R, Fink-Puches R, Smolle J. Mofarotene-induced inhibition of melanoma cell motility by increasing vinculin-containing focal contacts. Melanoma Res. 2004;14(6):547–54.PubMedCrossRef Helige C, Hofmann-Wellenhof R, Fink-Puches R, Smolle J. Mofarotene-induced inhibition of melanoma cell motility by increasing vinculin-containing focal contacts. Melanoma Res. 2004;14(6):547–54.PubMedCrossRef
56.
go back to reference Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, Gogler-Piglowska A, et al. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal. 2015;27(2):394–401.PubMedCrossRef Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, Gogler-Piglowska A, et al. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal. 2015;27(2):394–401.PubMedCrossRef
57.
go back to reference Nelson ES, Folkmann AW, Henry MD, DeMali KA. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy. Mol Cancer Res. 2011;9(6):712–23.PubMedPubMedCentralCrossRef Nelson ES, Folkmann AW, Henry MD, DeMali KA. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy. Mol Cancer Res. 2011;9(6):712–23.PubMedPubMedCentralCrossRef
58.
go back to reference Sadano H, Inoue M, Taniguchi S. Differential expression of vinculin between weakly and highly metastatic B16-melanoma cell lines. Jpn J Cancer Res. 1992;83(6):625–30.PubMedPubMedCentralCrossRef Sadano H, Inoue M, Taniguchi S. Differential expression of vinculin between weakly and highly metastatic B16-melanoma cell lines. Jpn J Cancer Res. 1992;83(6):625–30.PubMedPubMedCentralCrossRef
59.
go back to reference Brézillon S, Radwanska A, Zeltz C, Malkowski A, Ploton D, Bobichon H, et al. Lumican core protein inhibits melanoma cell migration via alterations of focal adhesion complexes. Cancer Lett. 2009;283(1):92–100.PubMedCrossRef Brézillon S, Radwanska A, Zeltz C, Malkowski A, Ploton D, Bobichon H, et al. Lumican core protein inhibits melanoma cell migration via alterations of focal adhesion complexes. Cancer Lett. 2009;283(1):92–100.PubMedCrossRef
60.
go back to reference Das M, Ithychanda SS, Qin J, Plow EFJBEBA-B. Mech talin-dependent integrin Signal crosstalk. 2014;1838(2):579–88. Das M, Ithychanda SS, Qin J, Plow EFJBEBA-B. Mech talin-dependent integrin Signal crosstalk. 2014;1838(2):579–88.
61.
go back to reference Katoh KJC. FAK-dependent cell motility and cell elongation. 2020;9(1):192. Katoh KJC. FAK-dependent cell motility and cell elongation. 2020;9(1):192.
62.
go back to reference Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu R-CN, Walker AL et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy. 2019;8(8):803. Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu R-CN, Walker AL et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy. 2019;8(8):803.
63.
go back to reference Davies MAJTCJ. The role of the PI3K-AKT pathway in melanoma. 2012;18(2):142–7. Davies MAJTCJ. The role of the PI3K-AKT pathway in melanoma. 2012;18(2):142–7.
64.
go back to reference Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, et al. AKT1E17K activates focal adhesion kinase and promotes melanoma brain metastasis. Mol Cancer Res. 2019;17(9):1787–800.PubMedPubMedCentralCrossRef Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, et al. AKT1E17K activates focal adhesion kinase and promotes melanoma brain metastasis. Mol Cancer Res. 2019;17(9):1787–800.PubMedPubMedCentralCrossRef
65.
go back to reference Akasaka T, van Leeuwen RL, Yoshinaga IG, Mihm MC Jr, Byers HR. Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J Invest dermatology. 1995;105(1):104–8.CrossRef Akasaka T, van Leeuwen RL, Yoshinaga IG, Mihm MC Jr, Byers HR. Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J Invest dermatology. 1995;105(1):104–8.CrossRef
66.
go back to reference Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene. 2002;21(25):3969–77.PubMedCrossRef Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene. 2002;21(25):3969–77.PubMedCrossRef
67.
go back to reference Hess AR, Postovit L-M, Margaryan NV, Seftor EA, Schneider GB, Seftor RE, et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res. 2005;65(21):9851–60.PubMedCrossRef Hess AR, Postovit L-M, Margaryan NV, Seftor EA, Schneider GB, Seftor RE, et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res. 2005;65(21):9851–60.PubMedCrossRef
68.
go back to reference Hodorogea A, Calinescu A, Antohe M, Balaban M, Nedelcu RI, Turcu G et al.Epithelial-mesenchymal transition in skin cancers: a review. 2019;2019. Hodorogea A, Calinescu A, Antohe M, Balaban M, Nedelcu RI, Turcu G et al.Epithelial-mesenchymal transition in skin cancers: a review. 2019;2019.
69.
go back to reference Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, Parsons PG, et al. H-cadherin expression reduces invasion of malignant melanoma. 2009;22(3):296–306. Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, Parsons PG, et al. H-cadherin expression reduces invasion of malignant melanoma. 2009;22(3):296–306.
70.
go back to reference Bauer R, Hein R, Bosserhoff, AKJEcr. A secreted form of P-cadherin is expressed in malignant melanoma. 2005;305(2):418–26. Bauer R, Hein R, Bosserhoff, AKJEcr. A secreted form of P-cadherin is expressed in malignant melanoma. 2005;305(2):418–26.
71.
go back to reference Bécam IE, Tanentzapf G, Lepesant J-A, Brown NH, Huynh J-RJNcb. Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. 2005;7(5):510–6. Bécam IE, Tanentzapf G, Lepesant J-A, Brown NH, Huynh J-RJNcb. Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. 2005;7(5):510–6.
72.
go back to reference Krajewski A, Gagat M, Mikołajczyk K, Izdebska M, Żuryń A, Grzanka AJCM et al. Cyclin F downregulation affects epithelial-mesenchymal transition increasing proliferation and migration of the A-375 melanoma cell line. 2020;12:13085. Krajewski A, Gagat M, Mikołajczyk K, Izdebska M, Żuryń A, Grzanka AJCM et al. Cyclin F downregulation affects epithelial-mesenchymal transition increasing proliferation and migration of the A-375 melanoma cell line. 2020;12:13085.
73.
go back to reference Thapa N, Tan X, Choi S, Wise T, Anderson RJO. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. 2017;36(7):899–911. Thapa N, Tan X, Choi S, Wise T, Anderson RJO. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. 2017;36(7):899–911.
74.
go back to reference Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. 2020;10(1):1–18. Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. 2020;10(1):1–18.
75.
go back to reference Azizi L, Cowell AR, Mykuliak VV, Goult BT, Turkki P, Hytönen VP. Cancer associated talin point mutations disorganise cell adhesion and migration. Sci Rep. 2021;11(1):1–16.CrossRef Azizi L, Cowell AR, Mykuliak VV, Goult BT, Turkki P, Hytönen VP. Cancer associated talin point mutations disorganise cell adhesion and migration. Sci Rep. 2021;11(1):1–16.CrossRef
76.
go back to reference Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski PJIJoMS. Target therapy melanoma Mech Resist. 2020;21(13):4576. Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski PJIJoMS. Target therapy melanoma Mech Resist. 2020;21(13):4576.
77.
go back to reference Liu-Smith F, Jia J. Zheng YJUlihh, diseases, environment. UV-induced molecular signaling differences in melanoma and non-melanoma skin cancer. 2017:27–40. Liu-Smith F, Jia J. Zheng YJUlihh, diseases, environment. UV-induced molecular signaling differences in melanoma and non-melanoma skin cancer. 2017:27–40.
78.
go back to reference Xu X, Chen L, Guerry D, Dawson PR, Hwang W-t, VanBelle P et al. Lymphatic invasion is independently prognostic of metastasis in primary cutaneous melanoma. 2012;18(1):229–37. Xu X, Chen L, Guerry D, Dawson PR, Hwang W-t, VanBelle P et al. Lymphatic invasion is independently prognostic of metastasis in primary cutaneous melanoma. 2012;18(1):229–37.
79.
go back to reference Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin ß tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.PubMedCrossRef Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin ß tails: a final common step in integrin activation. Science. 2003;302(5642):103–6.PubMedCrossRef
80.
go back to reference Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, et al. Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood. 2020;136(10):1180–90.PubMedPubMedCentralCrossRef Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, et al. Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood. 2020;136(10):1180–90.PubMedPubMedCentralCrossRef
81.
go back to reference Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost. 2009;7:206–9.PubMedCrossRef Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost. 2009;7:206–9.PubMedCrossRef
82.
go back to reference Yan H, Guo M, Zou J, Xiao F, Yi L, He Y et al. Promotive effect of Talin-1 protein on gastric cancer progression through PTK2‐PXN‐VCL‐E‐Cadherin‐CAPN2‐MAPK1 signaling axis. 2020;34(12):e23555. Yan H, Guo M, Zou J, Xiao F, Yi L, He Y et al. Promotive effect of Talin-1 protein on gastric cancer progression through PTK2‐PXN‐VCL‐E‐Cadherin‐CAPN2‐MAPK1 signaling axis. 2020;34(12):e23555.
83.
go back to reference Apalla Z, Lallas A, Sotiriou E, Lazaridou E. Ioannides DJDp, conceptual. Epidemiol trends skin cancer. 2017;7(2):1. Apalla Z, Lallas A, Sotiriou E, Lazaridou E. Ioannides DJDp, conceptual. Epidemiol trends skin cancer. 2017;7(2):1.
84.
go back to reference Weinberg AS, Ogle CA, Shim EKJDs. Metastatic cutaneous squamous cell carcinoma: an update. 2007;33(8):885–99. Weinberg AS, Ogle CA, Shim EKJDs. Metastatic cutaneous squamous cell carcinoma: an update. 2007;33(8):885–99.
85.
go back to reference Rahimi-Nedjat RK, Tuettenberg A, Sagheb K, Loquai C, Rybczynski B, Grabbe S et al. Factors accelerating recurrences and secondary tumors in cutaneous squamous cell carcinoma. 2021;49(4):317–22. Rahimi-Nedjat RK, Tuettenberg A, Sagheb K, Loquai C, Rybczynski B, Grabbe S et al. Factors accelerating recurrences and secondary tumors in cutaneous squamous cell carcinoma. 2021;49(4):317–22.
86.
go back to reference Hardisson DJEAoO-R-L. Molecular pathogenesis of head and neck squamous cell carcinoma. 2003;260(9):502–8. Hardisson DJEAoO-R-L. Molecular pathogenesis of head and neck squamous cell carcinoma. 2003;260(9):502–8.
87.
go back to reference Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JTJTJoci. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. 2012;122(2):464–72. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JTJTJoci. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. 2012;122(2):464–72.
88.
go back to reference Xu N, Chen H-J, Chen S-H, Xue X-Y, Chen H, Zheng Q-S et al. Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer.Medicine. 2016;95(29). Xu N, Chen H-J, Chen S-H, Xue X-Y, Chen H, Zheng Q-S et al. Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer.Medicine. 2016;95(29).
89.
go back to reference Ascierto PA, Kirkwood JM, Grob J-J, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J translational Med. 2012;10:1–9.CrossRef Ascierto PA, Kirkwood JM, Grob J-J, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J translational Med. 2012;10:1–9.CrossRef
90.
go back to reference Marquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, Gonzalez-Cao M et al.Immune checkpoint inhibitors: therapeutic advances in melanoma. 2015;3(18). Marquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, Gonzalez-Cao M et al.Immune checkpoint inhibitors: therapeutic advances in melanoma. 2015;3(18).
91.
go back to reference Furue M, Ito T, Wada N, Wada M, Kadono T. Uchi HJCor. Melanoma and immune checkpoint inhibitors. 2018;20(3):1–8. Furue M, Ito T, Wada N, Wada M, Kadono T. Uchi HJCor. Melanoma and immune checkpoint inhibitors. 2018;20(3):1–8.
92.
go back to reference Carlino MS, Larkin J, Long GVJTL. Immune Checkp inhibitors melanoma. 2021;398(10304):1002–14. Carlino MS, Larkin J, Long GVJTL. Immune Checkp inhibitors melanoma. 2021;398(10304):1002–14.
93.
go back to reference Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: how melanoma cells evade targeted therapies. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2019;1871(2):313–22.CrossRef Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: how melanoma cells evade targeted therapies. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2019;1871(2):313–22.CrossRef
94.
go back to reference Orgaz JL, Crosas-Molist E, Sadok A, Perdrix-Rosell A, Maiques O, Rodriguez-Hernandez I et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. 2020;37(1):85–103. e9. Orgaz JL, Crosas-Molist E, Sadok A, Perdrix-Rosell A, Maiques O, Rodriguez-Hernandez I et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. 2020;37(1):85–103. e9.
95.
go back to reference Barreno A, Orgaz JLJC. Cytoskeletal Remodelling as an Achilles’ Heel for Therapy Resistance in Melanoma. 2022;11(3):518. Barreno A, Orgaz JLJC. Cytoskeletal Remodelling as an Achilles’ Heel for Therapy Resistance in Melanoma. 2022;11(3):518.
96.
go back to reference Misek S, Appleton K, Dexheimer T, Lisabeth E, Lo R, Larsen S, et al. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene. 2020;39(7):1466–83.PubMedCrossRef Misek S, Appleton K, Dexheimer T, Lisabeth E, Lo R, Larsen S, et al. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene. 2020;39(7):1466–83.PubMedCrossRef
97.
go back to reference Paulitschke V, Berger W, Paulitschke P, Hofstätter E, Knapp B, Dingelmaier-Hovorka R, et al. Vemurafenib Resistance signature by Proteome Analysis offers New Strategies and Rational Therapeutic ConceptsVemurafenib Resistance signature in Melanoma. Mol Cancer Ther. 2015;14(3):757–68.PubMedCrossRef Paulitschke V, Berger W, Paulitschke P, Hofstätter E, Knapp B, Dingelmaier-Hovorka R, et al. Vemurafenib Resistance signature by Proteome Analysis offers New Strategies and Rational Therapeutic ConceptsVemurafenib Resistance signature in Melanoma. Mol Cancer Ther. 2015;14(3):757–68.PubMedCrossRef
98.
go back to reference Kim MH, Kim J, Hong H, Lee SH, Lee JK, Jung E, et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016;35(5):462–78.PubMedCrossRef Kim MH, Kim J, Hong H, Lee SH, Lee JK, Jung E, et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016;35(5):462–78.PubMedCrossRef
99.
go back to reference Orgaz JL, Crosas-Molist E, Sadok A, Perdrix-Rosell A, Maiques O, Rodriguez-Hernandez I, et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. Cancer Cell. 2020;37(1):85–103. e9.PubMedPubMedCentralCrossRef Orgaz JL, Crosas-Molist E, Sadok A, Perdrix-Rosell A, Maiques O, Rodriguez-Hernandez I, et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. Cancer Cell. 2020;37(1):85–103. e9.PubMedPubMedCentralCrossRef
100.
go back to reference Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.PubMedPubMedCentralCrossRef Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.PubMedPubMedCentralCrossRef
102.
go back to reference Zhao Y, Lykov N, Tzeng C. Talin–1 interaction network in cellular mechanotransduction. Int J Mol Med. 2022;49(5):1–12.CrossRef Zhao Y, Lykov N, Tzeng C. Talin–1 interaction network in cellular mechanotransduction. Int J Mol Med. 2022;49(5):1–12.CrossRef
103.
go back to reference Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18(5):540–8.PubMedCrossRef Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18(5):540–8.PubMedCrossRef
104.
go back to reference Sjoestroem C, Khosravi S, Cheng Y, Safaee Ardekani G, Martinka M, Li G. DLC1 expression is reduced in human cutaneous melanoma and correlates with patient survival. Mod Pathol. 2014;27(9):1203–11.PubMedCrossRef Sjoestroem C, Khosravi S, Cheng Y, Safaee Ardekani G, Martinka M, Li G. DLC1 expression is reduced in human cutaneous melanoma and correlates with patient survival. Mod Pathol. 2014;27(9):1203–11.PubMedCrossRef
105.
go back to reference Vlachostergios PJJAjotr. Integrin signaling gene alterations and outcomes of cancer patients receiving immune checkpoint inhibitors. 2021;13(11):12386. Vlachostergios PJJAjotr. Integrin signaling gene alterations and outcomes of cancer patients receiving immune checkpoint inhibitors. 2021;13(11):12386.
Metadata
Title
High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients
Authors
Yasaman Rezaie
Fahimeh Fattahi
Baharnaz Mashinchi
Kambiz Kamyab Hesari
Sahar Montazeri
Elham Kalantari
Zahra Madjd
Leili Saeednejad Zanjani
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10771-z

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine