Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Melanoma | Research

Dissecting immune cell stat regulation network reveals biomarkers to predict ICB therapy responders in melanoma

Authors: Jingwen Wang, Feng Li, Yanjun Xu, Xuan Zheng, Chunlong Zhang, Congxue Hu, Yingqi Xu, Wanqi Mi, Xia Li, Yunpeng Zhang

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Immunotherapy is a revolutionary strategy in cancer therapy, but the resistance of which is one of the important challenges. Detecting the regulation of immune cells and biomarkers concerning immune checkpoint blockade (ICB) therapy is of great significance.

Methods

Here, we firstly constructed regulation networks for 11 immune cell clusters by integrating biological pathway data and single cell sequencing data in metastatic melanoma with or without ICB therapy. We then dissected these regulation networks and identified differently expressed genes between responders and non-responders. Finally, we trained and validated a logistic regression model based on ligands and receptors in the regulation network to predict ICB therapy response.

Results

We discovered the regulation of genes across eleven immune cell stats. Functional analysis indicated that these stat-specific networks consensually enriched in immune response corrected pathways and highlighted antigen processing and presentation as a core pathway in immune cell regulation. Furthermore, some famous ligands like SIRPA, ITGAM, CD247and receptors like CD14, IL2 and HLA-G were differently expressed between cells of responders and non-responders. A predictive model of gene sets containing ligands and receptors performed accuracy prediction with AUCs above 0.7 in a validation dataset suggesting that they may be server as biomarkers for predicting immunotherapy response.

Conclusions

In summary, our study presented the gene–gene regulation landscape across 11 immune cell clusters and analysis of these networks revealed several important aspects and immunotherapy response biomarkers, which may provide novel insights into immune related mechanisms and immunotherapy response prediction.
Appendix
Available only for authorised users
Literature
2.
go back to reference Gupta R, Janostiak R, Wajapeyee N. Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene. 2020;39(48):7093–105 (Epub 2020/10/08).PubMedPubMedCentralCrossRef Gupta R, Janostiak R, Wajapeyee N. Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene. 2020;39(48):7093–105 (Epub 2020/10/08).PubMedPubMedCentralCrossRef
3.
go back to reference Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74 (Epub 2015/04/04).PubMedCrossRef Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74 (Epub 2015/04/04).PubMedCrossRef
4.
go back to reference Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61 (Epub 2015/04/04).PubMedCrossRef Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61 (Epub 2015/04/04).PubMedCrossRef
5.
go back to reference Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14 (Epub 2015/04/11).PubMedPubMedCentralCrossRef Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14 (Epub 2015/04/11).PubMedPubMedCentralCrossRef
7.
go back to reference Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018;10(1):93 (Epub 2018/12/01).PubMedPubMedCentralCrossRef Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018;10(1):93 (Epub 2018/12/01).PubMedPubMedCentralCrossRef
8.
go back to reference Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11 (Epub 2015/09/12).PubMedPubMedCentralCrossRef Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11 (Epub 2015/09/12).PubMedPubMedCentralCrossRef
9.
go back to reference Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136 (Epub 2017/10/27).PubMedPubMedCentralCrossRef Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136 (Epub 2017/10/27).PubMedPubMedCentralCrossRef
10.
go back to reference Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32 (Epub 2015/04/22).PubMedCrossRef Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32 (Epub 2015/04/22).PubMedCrossRef
11.
go back to reference Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84 (Epub 2015/03/22).PubMedCrossRef Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84 (Epub 2015/03/22).PubMedCrossRef
12.
go back to reference Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7 (Epub 2014/11/28).PubMedPubMedCentralCrossRef Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7 (Epub 2014/11/28).PubMedPubMedCentralCrossRef
13.
go back to reference Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet. 2019;20(12):724–46 (Epub 2019/09/14).PubMedCrossRef Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet. 2019;20(12):724–46 (Epub 2019/09/14).PubMedCrossRef
14.
go back to reference Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998–1013 (Epub 2018/11/06).PubMedPubMedCentralCrossRef Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998–1013 (Epub 2018/11/06).PubMedPubMedCentralCrossRef
15.
go back to reference Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71 (Epub 2014/11/28).PubMedPubMedCentralCrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71 (Epub 2014/11/28).PubMedPubMedCentralCrossRef
16.
go back to reference Moreira A, Leisgang W, Schuler G, Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy. 2017;9(2):115–21 (Epub 2017/01/28).PubMedCrossRef Moreira A, Leisgang W, Schuler G, Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy. 2017;9(2):115–21 (Epub 2017/01/28).PubMedCrossRef
17.
go back to reference Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96 (Epub 2016/04/29).PubMedPubMedCentralCrossRef Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96 (Epub 2016/04/29).PubMedPubMedCentralCrossRef
18.
go back to reference Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al. The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–42 (Epub 2010/09/11).PubMedPubMedCentralCrossRef Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al. The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–42 (Epub 2010/09/11).PubMedPubMedCentralCrossRef
19.
go back to reference Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol. 2013;31(19):2388–95 (Epub 2013/05/30).PubMedCrossRef Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol. 2013;31(19):2388–95 (Epub 2013/05/30).PubMedCrossRef
20.
go back to reference Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47(D1):D33–8 (Epub 2018/09/12).PubMedCrossRef Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47(D1):D33–8 (Epub 2018/09/12).PubMedCrossRef
21.
go back to reference Lizio M, Abugessaisa I, Noguchi S, Kondo A, Hasegawa A, Hon CC, et al. Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Res. 2019;47(D1):D752–8 (Epub 2018/11/09).PubMedCrossRef Lizio M, Abugessaisa I, Noguchi S, Kondo A, Hasegawa A, Hon CC, et al. Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Res. 2019;47(D1):D752–8 (Epub 2018/11/09).PubMedCrossRef
22.
go back to reference Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–12 (Epub 1999/10/16).PubMedCrossRef Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–12 (Epub 1999/10/16).PubMedCrossRef
23.
go back to reference Barabasi AL. Scale-free networks: a decade and beyond. Science. 2009;325(5939):412–3 (Epub 2009/07/25).PubMedCrossRef Barabasi AL. Scale-free networks: a decade and beyond. Science. 2009;325(5939):412–3 (Epub 2009/07/25).PubMedCrossRef
24.
go back to reference Zhang J, Liu L, Li J, Le TD. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics. 2018;34(24):4232–40 (Epub 2018/06/30).PubMedCrossRef Zhang J, Liu L, Li J, Le TD. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics. 2018;34(24):4232–40 (Epub 2018/06/30).PubMedCrossRef
25.
go back to reference Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity. 2018;49(1):178–93 (Epub 2018/07/01).PubMedPubMedCentralCrossRef Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity. 2018;49(1):178–93 (Epub 2018/07/01).PubMedPubMedCentralCrossRef
26.
go back to reference Li X, Wenes M, Romero P, Huang SC, Fendt SM, Ho PC. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–41 (Epub 2019/03/28).PubMedCrossRef Li X, Wenes M, Romero P, Huang SC, Fendt SM, Ho PC. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–41 (Epub 2019/03/28).PubMedCrossRef
27.
go back to reference Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53 (Epub 2017/01/24).PubMedCrossRef Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53 (Epub 2017/01/24).PubMedCrossRef
28.
go back to reference Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, et al. IL-15 enhances the antitumor effect of human antigen-specific CD8(+) T cells by cellular senescence delay. Oncoimmunology. 2016;5(12):e1237327 (Epub 2017/01/27).PubMedPubMedCentralCrossRef Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, et al. IL-15 enhances the antitumor effect of human antigen-specific CD8(+) T cells by cellular senescence delay. Oncoimmunology. 2016;5(12):e1237327 (Epub 2017/01/27).PubMedPubMedCentralCrossRef
29.
go back to reference Ercan G, Karlitepe A, Ozpolat B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res. 2017;37(6):2761–75 (Epub 2017/05/30).PubMed Ercan G, Karlitepe A, Ozpolat B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res. 2017;37(6):2761–75 (Epub 2017/05/30).PubMed
30.
go back to reference Yin T, Shi P, Gou S, Shen Q, Wang C. Dendritic cells loaded with pancreatic cancer stem cells (CSCs) lysates induce antitumor immune killing effect in vitro. PLoS ONE. 2014;9(12):e114581 (Epub 2014/12/19).PubMedPubMedCentralCrossRef Yin T, Shi P, Gou S, Shen Q, Wang C. Dendritic cells loaded with pancreatic cancer stem cells (CSCs) lysates induce antitumor immune killing effect in vitro. PLoS ONE. 2014;9(12):e114581 (Epub 2014/12/19).PubMedPubMedCentralCrossRef
31.
go back to reference de Gast GC, Batchelor D, Kersten MJ, Vyth-Dreese FA, Sein J, van de Kasteele WF, et al. Temozolomide followed by combined immunotherapy with GM-CSF, low-dose IL2 and IFN alpha in patients with metastatic melanoma. Br J Cancer. 2003;88(2):175–80 (Epub 2003/03/01).PubMedPubMedCentralCrossRef de Gast GC, Batchelor D, Kersten MJ, Vyth-Dreese FA, Sein J, van de Kasteele WF, et al. Temozolomide followed by combined immunotherapy with GM-CSF, low-dose IL2 and IFN alpha in patients with metastatic melanoma. Br J Cancer. 2003;88(2):175–80 (Epub 2003/03/01).PubMedPubMedCentralCrossRef
32.
go back to reference Harfuddin Z, Dharmadhikari B, Wong SC, Duan K, Poidinger M, Kwajah S, et al. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep. 2016;6:29712.PubMedPubMedCentralCrossRef Harfuddin Z, Dharmadhikari B, Wong SC, Duan K, Poidinger M, Kwajah S, et al. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep. 2016;6:29712.PubMedPubMedCentralCrossRef
33.
go back to reference Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, et al. The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med. 2012;4(149):149ra20 (Epub 2012/08/31).CrossRef Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, et al. The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med. 2012;4(149):149ra20 (Epub 2012/08/31).CrossRef
34.
go back to reference Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, et al. A dual immunotherapy nanoparticle improves T-cell activation and cancer immunotherapy. Adv Mater. 2018;30(25):e1706098 (Epub 2018/04/25).PubMedPubMedCentralCrossRef Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, et al. A dual immunotherapy nanoparticle improves T-cell activation and cancer immunotherapy. Adv Mater. 2018;30(25):e1706098 (Epub 2018/04/25).PubMedPubMedCentralCrossRef
35.
go back to reference Martinez-Soria N, McKenzie L, Draper J, Ptasinska A, Issa H, Potluri S, et al. The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation. Cancer Cell. 2019;35(4):705 (Epub 2019/04/17).PubMedPubMedCentralCrossRef Martinez-Soria N, McKenzie L, Draper J, Ptasinska A, Issa H, Potluri S, et al. The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation. Cancer Cell. 2019;35(4):705 (Epub 2019/04/17).PubMedPubMedCentralCrossRef
36.
go back to reference Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274(5294):1855–9 (Epub 1996/12/13).PubMedCrossRef Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274(5294):1855–9 (Epub 1996/12/13).PubMedCrossRef
37.
go back to reference Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999;96(5):615–24 (Epub 1999/03/25).PubMedCrossRef Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999;96(5):615–24 (Epub 1999/03/25).PubMedCrossRef
39.
go back to reference Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34 (Epub 1998/12/10).PubMedPubMedCentralCrossRef Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34 (Epub 1998/12/10).PubMedPubMedCentralCrossRef
40.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9 (Epub 2000/05/10).PubMedPubMedCentralCrossRef Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9 (Epub 2000/05/10).PubMedPubMedCentralCrossRef
41.
go back to reference Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids Res. 2016;44(1):e1 (Epub 2015/08/13).PubMedCrossRef Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids Res. 2016;44(1):e1 (Epub 2015/08/13).PubMedCrossRef
42.
go back to reference Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45 (Epub 2015/07/21).PubMedPubMedCentralCrossRef Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45 (Epub 2015/07/21).PubMedPubMedCentralCrossRef
43.
go back to reference Niwa N, Tanaka N, Hongo H, Miyazaki Y, Takamatsu K, Mizuno R, et al. TNFAIP2 expression induces epithelial-to-mesenchymal transition and confers platinum resistance in urothelial cancer cells. Lab Invest. 2019;99(11):1702–13 (Epub 2019/07/03).PubMedCrossRef Niwa N, Tanaka N, Hongo H, Miyazaki Y, Takamatsu K, Mizuno R, et al. TNFAIP2 expression induces epithelial-to-mesenchymal transition and confers platinum resistance in urothelial cancer cells. Lab Invest. 2019;99(11):1702–13 (Epub 2019/07/03).PubMedCrossRef
44.
go back to reference Yang H, Shao R, Huang H, Wang X, Rong Z, Lin Y. Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPa axis. Cancer Med. 2019;8(9):4245–53 (Epub 2019/06/12).PubMedPubMedCentralCrossRef Yang H, Shao R, Huang H, Wang X, Rong Z, Lin Y. Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPa axis. Cancer Med. 2019;8(9):4245–53 (Epub 2019/06/12).PubMedPubMedCentralCrossRef
45.
go back to reference Gu S, Ni T, Wang J, Liu Y, Fan Q, Wang Y, et al. CD47 blockade inhibits tumor progression through promoting phagocytosis of tumor cells by M2 polarized macrophages in endometrial cancer. J Immunol Res. 2018;2018:6156757 (Epub 2018/12/14).PubMedPubMedCentralCrossRef Gu S, Ni T, Wang J, Liu Y, Fan Q, Wang Y, et al. CD47 blockade inhibits tumor progression through promoting phagocytosis of tumor cells by M2 polarized macrophages in endometrial cancer. J Immunol Res. 2018;2018:6156757 (Epub 2018/12/14).PubMedPubMedCentralCrossRef
46.
go back to reference Horrigan SK. Reproducibility Project: Cancer B Replication Study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Elife. 2017;6:e18173 (Epub 2017/01/20).PubMedPubMedCentralCrossRef Horrigan SK. Reproducibility Project: Cancer B Replication Study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Elife. 2017;6:e18173 (Epub 2017/01/20).PubMedPubMedCentralCrossRef
47.
go back to reference Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, et al. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 2019;10(6):394 (Epub 2019/05/23).PubMedPubMedCentralCrossRef Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, et al. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 2019;10(6):394 (Epub 2019/05/23).PubMedPubMedCentralCrossRef
48.
go back to reference Pereira PMR, Sharma SK, Carter LM, Edwards KJ, Pourat J, Ragupathi A, et al. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun. 2018;9(1):5137 (Epub 2018/12/05).PubMedPubMedCentralCrossRef Pereira PMR, Sharma SK, Carter LM, Edwards KJ, Pourat J, Ragupathi A, et al. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun. 2018;9(1):5137 (Epub 2018/12/05).PubMedPubMedCentralCrossRef
49.
go back to reference Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623–37 (Epub 2014/12/03).PubMedPubMedCentralCrossRef Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623–37 (Epub 2014/12/03).PubMedPubMedCentralCrossRef
50.
go back to reference Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ. Proteomic analysis of integrin adhesion complexes. Sci Signal. 2011;4(167):pt2 (Epub 2011/04/07).PubMed Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ. Proteomic analysis of integrin adhesion complexes. Sci Signal. 2011;4(167):pt2 (Epub 2011/04/07).PubMed
51.
go back to reference Sullivan RJ. Back to the future: rethinking and retooling IL2 in the immune checkpoint inhibitor era. Cancer Discov. 2019;9(6):694–5 (Epub 2019/06/05).PubMedCrossRef Sullivan RJ. Back to the future: rethinking and retooling IL2 in the immune checkpoint inhibitor era. Cancer Discov. 2019;9(6):694–5 (Epub 2019/06/05).PubMedCrossRef
52.
go back to reference Abram CL, Lowell CA. The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE. 2007;2007(377):re2 (Epub 2007/03/16).PubMedCrossRef Abram CL, Lowell CA. The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE. 2007;2007(377):re2 (Epub 2007/03/16).PubMedCrossRef
53.
go back to reference Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9 (Epub 1997/11/21).PubMedCrossRef Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9 (Epub 1997/11/21).PubMedCrossRef
54.
go back to reference Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun. 2019;20(8):609–26 (Epub 2019/01/29).PubMedCrossRef Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun. 2019;20(8):609–26 (Epub 2019/01/29).PubMedCrossRef
55.
go back to reference Cosset E, Ilmjarv S, Dutoit V, Elliott K, von Schalscha T, Camargo MF, et al. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell. 2017;32(6):856–68 (Epub 2017/12/05).PubMedPubMedCentralCrossRef Cosset E, Ilmjarv S, Dutoit V, Elliott K, von Schalscha T, Camargo MF, et al. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell. 2017;32(6):856–68 (Epub 2017/12/05).PubMedPubMedCentralCrossRef
56.
go back to reference Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K, Faou P, et al. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 2015;162(6):1365–78 (Epub 2015/09/12).PubMedCrossRef Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K, Faou P, et al. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 2015;162(6):1365–78 (Epub 2015/09/12).PubMedCrossRef
57.
go back to reference Zanoni I, Ostuni R, Capuano G, Collini M, Caccia M, Ronchi AE, et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature. 2009;460(7252):264–8 (Epub 2009/06/16).PubMedCrossRef Zanoni I, Ostuni R, Capuano G, Collini M, Caccia M, Ronchi AE, et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature. 2009;460(7252):264–8 (Epub 2009/06/16).PubMedCrossRef
58.
go back to reference Praest P, de Buhr H, Wiertz E. A flow cytometry-based approach to unravel viral interference with the MHC class I antigen processing and presentation pathway. Methods Mol Biol. 2019;1988:187–98 (Epub 2019/05/31).PubMedCrossRef Praest P, de Buhr H, Wiertz E. A flow cytometry-based approach to unravel viral interference with the MHC class I antigen processing and presentation pathway. Methods Mol Biol. 2019;1988:187–98 (Epub 2019/05/31).PubMedCrossRef
59.
go back to reference Kelly A, Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics. 2019;71(3):161–70 (Epub 2018/09/15).PubMedCrossRef Kelly A, Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics. 2019;71(3):161–70 (Epub 2018/09/15).PubMedCrossRef
60.
go back to reference Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14(11):655–68 (Epub 2017/06/28).PubMedPubMedCentralCrossRef Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14(11):655–68 (Epub 2017/06/28).PubMedPubMedCentralCrossRef
61.
go back to reference Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40 (Epub 2017/06/27).PubMedPubMedCentralCrossRef Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40 (Epub 2017/06/27).PubMedPubMedCentralCrossRef
62.
go back to reference Tsai KK, Zarzoso I, Daud AI. PD-1 and PD-L1 antibodies for melanoma. Hum Vaccin Immunother. 2014;10(11):3111–6 (Epub 2015/01/28).PubMedCrossRef Tsai KK, Zarzoso I, Daud AI. PD-1 and PD-L1 antibodies for melanoma. Hum Vaccin Immunother. 2014;10(11):3111–6 (Epub 2015/01/28).PubMedCrossRef
63.
go back to reference Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, et al. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res. 2017;23(20):6054–61 (Epub 2017/07/21).PubMedCrossRef Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, et al. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res. 2017;23(20):6054–61 (Epub 2017/07/21).PubMedCrossRef
64.
go back to reference Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8 (Epub 2018/08/22).PubMedPubMedCentralCrossRef Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8 (Epub 2018/08/22).PubMedPubMedCentralCrossRef
Metadata
Title
Dissecting immune cell stat regulation network reveals biomarkers to predict ICB therapy responders in melanoma
Authors
Jingwen Wang
Feng Li
Yanjun Xu
Xuan Zheng
Chunlong Zhang
Congxue Hu
Yingqi Xu
Wanqi Mi
Xia Li
Yunpeng Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02962-8

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine