Skip to main content
Top
Published in: Journal of Medical Systems 2/2019

01-02-2019 | Transactional Processing Systems

Medical Data Management on Blockchain with Privacy

Authors: Haibo Tian, Jiejie He, Yong Ding

Published in: Journal of Medical Systems | Issue 2/2019

Login to get access

Abstract

Medical data are important in diagnosis, treatment, recovery, and medical accident investigation. The integrity and availability of medical data are the basic guarantee for the smooth operation of these activities. The privacy of medical data is a natural demand from the sensitivity of medical data. At present, there are mainly two ways to protect the privacy of medical data. One way is to store medical data in a local database and set up an access control strategy of the database. The other way is to encrypt medical data with the patient’s key and to share the key when needed. The problem with the first method is that the data in the local database may be modified or deleted. The problem with the second method is that the key cannot be shared when the patient dies during the diagnosis and treatment. These two problems will damage the availability of data. This paper proposes to establish a shared key that could be reconstructed by the legitimate parties before the process of diagnosis and treatment begins. The data in the diagnosis and treatment process is encrypted and stored in a blockchain using the shared key. The proposal meets the integrity, availability and privacy requirements of medical data. It uses the sibling intractable function families (SIFF) to establish a shared key, and uses the Hyperledger Fabric to store encrypted data. The simulation shows that the system has good efficiency. Additionally, it is the first time to introduce SIFF to a blockchain application.
Literature
3.
go back to reference Omar, A. A., Rahman, M. S., Basu, A., and Kiyomoto, S.: MediBchain: a blockchain based privacy preserving platform for Healthcare Data. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, pp. 534–543, 2017. Omar, A. A., Rahman, M. S., Basu, A., and Kiyomoto, S.: MediBchain: a blockchain based privacy preserving platform for Healthcare Data. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, pp. 534–543, 2017.
4.
go back to reference Yue, X., Wang, H., Jin, D., Li, M., and Jiang, W., Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40(10):1–8, 2016.CrossRef Yue, X., Wang, H., Jin, D., Li, M., and Jiang, W., Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40(10):1–8, 2016.CrossRef
5.
go back to reference Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., and Wang, F.: Secure and trustable electronic medical records sharing using Blockchain, arXiv preprint arXiv:1709.06528, 2017 Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., and Wang, F.: Secure and trustable electronic medical records sharing using Blockchain, arXiv preprint arXiv:1709.​06528, 2017
6.
go back to reference Wallace, E., Lowry, J., Smith, S.M., and Fahey, T.: The epidemiology of malpractice claims in primary care: a systematic review. BMJ Open 3(6):e002929, 2013.CrossRef Wallace, E., Lowry, J., Smith, S.M., and Fahey, T.: The epidemiology of malpractice claims in primary care: a systematic review. BMJ Open 3(6):e002929, 2013.CrossRef
7.
go back to reference Zheng, Y., Hardjono, T., and Pieprzyk, J.: Sibling intractable function families and their applications. In: International Conference on the Theory and Application of Cryptology, pp. 124–138 , 1991. Zheng, Y., Hardjono, T., and Pieprzyk, J.: Sibling intractable function families and their applications. In: International Conference on the Theory and Application of Cryptology, pp. 124–138 , 1991.
8.
go back to reference Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: International Conference on Open and Big Data, pp. 25–30, 2016. Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: International Conference on Open and Big Data, pp. 25–30, 2016.
11.
go back to reference Xia, Q., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X., and Guizani, M., MeDShare: trustless medical data sharing among cloud service providers via blockchain. IEEE Access PP(99):1–1, 2017. Xia, Q., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X., and Guizani, M., MeDShare: trustless medical data sharing among cloud service providers via blockchain. IEEE Access PP(99):1–1, 2017.
Metadata
Title
Medical Data Management on Blockchain with Privacy
Authors
Haibo Tian
Jiejie He
Yong Ding
Publication date
01-02-2019
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 2/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1144-x

Other articles of this Issue 2/2019

Journal of Medical Systems 2/2019 Go to the issue