Skip to main content
Top
Published in: Journal of Medical Systems 2/2019

Open Access 01-02-2019 | Image & Signal Processing

The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data

Authors: Amir Jahangiri, Francisco Sepulveda

Published in: Journal of Medical Systems | Issue 2/2019

Login to get access

Abstract

Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissimilar phonemic structures “BA”, “FO”, “LE”, and “RY” were chosen as covert speech tasks. Ten neurologically healthy volunteers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used, which contained linguistic and motor imagery activities. The four-class true positive rate was calculated. In the next stage, 312 ms trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition (~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kraft, E., Gulyas, B., and Poppel, E., Neural correlates of thinking, 1 ed. Berlin, Springer-Verlag, pp. 65–139, 2009.CrossRef Kraft, E., Gulyas, B., and Poppel, E., Neural correlates of thinking, 1 ed. Berlin, Springer-Verlag, pp. 65–139, 2009.CrossRef
2.
go back to reference Hsu D., Hsu, M., Grabenstatter, H. L., Worrell, G. A., and Sutula, T. P., Characterization of high frequency oscillations and EEG frequency spectra using the damped-oscillator oscillator detector (DOOD). arXiv, vol. 1309, no. 1086, 2013. Hsu D., Hsu, M., Grabenstatter, H. L., Worrell, G. A., and Sutula, T. P., Characterization of high frequency oscillations and EEG frequency spectra using the damped-oscillator oscillator detector (DOOD). arXiv, vol. 1309, no. 1086, 2013.
3.
go back to reference Pulvermoller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B., High-frequency brain activity: Its possible role in attention, perception and language processing. Prog. Neurobiol. 52:427–445, 1997.CrossRef Pulvermoller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B., High-frequency brain activity: Its possible role in attention, perception and language processing. Prog. Neurobiol. 52:427–445, 1997.CrossRef
4.
go back to reference Baker, S. N., Curio, G., and Lemon, R. N., EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. Physiol 550(2):529–534, 2003.CrossRef Baker, S. N., Curio, G., and Lemon, R. N., EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. Physiol 550(2):529–534, 2003.CrossRef
5.
go back to reference Pitts, M. A., Padwal, J., Fennelly, D., Martínez, A., and Hillyard, S. A., Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337–350, 2014.CrossRefPubMedPubMedCentral Pitts, M. A., Padwal, J., Fennelly, D., Martínez, A., and Hillyard, S. A., Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337–350, 2014.CrossRefPubMedPubMedCentral
6.
go back to reference Darvas, F., Scherer, R., Ojemann, J. G., Rao, R. P., Miller, K. J., and Sorensen, L. B., High gamma mapping using EEG. Neuroimage 49(1):930–938, 2010.CrossRefPubMed Darvas, F., Scherer, R., Ojemann, J. G., Rao, R. P., Miller, K. J., and Sorensen, L. B., High gamma mapping using EEG. Neuroimage 49(1):930–938, 2010.CrossRefPubMed
7.
go back to reference Muthukumaraswamy, S. D., High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci. 7:138, 2013.CrossRefPubMedPubMedCentral Muthukumaraswamy, S. D., High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci. 7:138, 2013.CrossRefPubMedPubMedCentral
9.
go back to reference Indefrey, P., The spatial and temporal signatures of word production components: a critical update. Front. Psychol. 2(255):255–271, 2011.PubMedPubMedCentral Indefrey, P., The spatial and temporal signatures of word production components: a critical update. Front. Psychol. 2(255):255–271, 2011.PubMedPubMedCentral
10.
go back to reference Indefrey, P., and Levelt, W. J. M., The spatial and temporal signatures of word production components. Cognition 92:101–144, 2004.CrossRefPubMed Indefrey, P., and Levelt, W. J. M., The spatial and temporal signatures of word production components. Cognition 92:101–144, 2004.CrossRefPubMed
11.
go back to reference Leuthardt, E. C. et al., Temporal evolution of gamma activity in human cortex during an overt and covert word repetition task. Front. Hum. Neurosci. 6:99, 2012.CrossRefPubMedPubMedCentral Leuthardt, E. C. et al., Temporal evolution of gamma activity in human cortex during an overt and covert word repetition task. Front. Hum. Neurosci. 6:99, 2012.CrossRefPubMedPubMedCentral
12.
go back to reference Fukuda, M., Rothermel, R., Juhász, C., Nishida, M., Sood, S., and Asano, E., Cortical gamma-oscillations modulated by listening and overt repetition of phonemes. Neuroimage 49(3):2735–2745, 2010.CrossRefPubMed Fukuda, M., Rothermel, R., Juhász, C., Nishida, M., Sood, S., and Asano, E., Cortical gamma-oscillations modulated by listening and overt repetition of phonemes. Neuroimage 49(3):2735–2745, 2010.CrossRefPubMed
13.
14.
go back to reference Flinker, A., Chang, E. F., Kirsch, H. E., Barbaro, N. M., Crone, N. E., and Knight, R. T., Single-trial speech suppression of auditory cortex activity in humans. J. Neurosci. 30(49):16643–16650, 2010.CrossRefPubMedPubMedCentral Flinker, A., Chang, E. F., Kirsch, H. E., Barbaro, N. M., Crone, N. E., and Knight, R. T., Single-trial speech suppression of auditory cortex activity in humans. J. Neurosci. 30(49):16643–16650, 2010.CrossRefPubMedPubMedCentral
15.
go back to reference Creutzfeldt, O., Ojemann, G., and Lettich, E., Neuronal activity in the human lateral temporal lobe. Exp. Brain Res. 77:451–475, 1989.CrossRefPubMed Creutzfeldt, O., Ojemann, G., and Lettich, E., Neuronal activity in the human lateral temporal lobe. Exp. Brain Res. 77:451–475, 1989.CrossRefPubMed
16.
go back to reference Martin, R. C., Lesch, M. F., and Bartha, M. C., Independence of Input and Output Phonology in Word Processing and Short-Term Memory. J. Mem. Lang. 41:3–29, 1999.CrossRef Martin, R. C., Lesch, M. F., and Bartha, M. C., Independence of Input and Output Phonology in Word Processing and Short-Term Memory. J. Mem. Lang. 41:3–29, 1999.CrossRef
18.
go back to reference Kaan, E., Event related potentials and language processing: a brief overview. Lang Ling Compass 1(6):571–579, 2007.CrossRef Kaan, E., Event related potentials and language processing: a brief overview. Lang Ling Compass 1(6):571–579, 2007.CrossRef
19.
go back to reference Ganushchak, L. Y., Christoffels, I. K., and Schiller, N. O., The use of electroencephalography in language production research: a review. Front. Psychol. 2:208, 2011.CrossRefPubMedPubMedCentral Ganushchak, L. Y., Christoffels, I. K., and Schiller, N. O., The use of electroencephalography in language production research: a review. Front. Psychol. 2:208, 2011.CrossRefPubMedPubMedCentral
20.
go back to reference Llorens, A., Trebuchon, A., Liegeois-Chauvel, C., and Alario, F. X., Intra-cranial recordings of brain activity during language production. Front. Psychol. 2:375, 2011.CrossRefPubMedPubMedCentral Llorens, A., Trebuchon, A., Liegeois-Chauvel, C., and Alario, F. X., Intra-cranial recordings of brain activity during language production. Front. Psychol. 2:375, 2011.CrossRefPubMedPubMedCentral
21.
go back to reference Numminena, J., and Curio, G., Differential effects of overt, covert and replayed speech on vowel- evoked responses of the human auditory cortex. Neurosci. Lett. 272:29–32, 1999.CrossRef Numminena, J., and Curio, G., Differential effects of overt, covert and replayed speech on vowel- evoked responses of the human auditory cortex. Neurosci. Lett. 272:29–32, 1999.CrossRef
22.
go back to reference Chakrabarti, S., Sandberg, H. M., Brumberg, J. S., and Krusienski, D. J., Progress in Speech Decoding from the Electrocorticogram. Biomed. Eng. Lett. 5:10–21, 2015.CrossRef Chakrabarti, S., Sandberg, H. M., Brumberg, J. S., and Krusienski, D. J., Progress in Speech Decoding from the Electrocorticogram. Biomed. Eng. Lett. 5:10–21, 2015.CrossRef
23.
go back to reference Pei, X., Leuthardt, E. C., Gaona, C. M., Brunner, P., Wolpaw, J. R., and Schalk, G., Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage 54:2960–2972, 2011.CrossRefPubMed Pei, X., Leuthardt, E. C., Gaona, C. M., Brunner, P., Wolpaw, J. R., and Schalk, G., Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage 54:2960–2972, 2011.CrossRefPubMed
25.
go back to reference Cummingsn, A., Seddoh, A., and Jallo, B., Phonological code retrieval during picture naming: Influence of consonant class. Brain Res. 1635:71–85, 2016.CrossRef Cummingsn, A., Seddoh, A., and Jallo, B., Phonological code retrieval during picture naming: Influence of consonant class. Brain Res. 1635:71–85, 2016.CrossRef
26.
go back to reference Fry, D. B., The Physics of Speech (Cambridge Textbooks in Linguistics). Cambridge University Press Online Publication, 2012. Fry, D. B., The Physics of Speech (Cambridge Textbooks in Linguistics). Cambridge University Press Online Publication, 2012.
27.
go back to reference Jahangiri, A. and Sepulveda, F., The contribution of different frequency bands in class separability of covert speech tasks for BCIs. In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, pp. 2093–2096: IEEE, 2017. Jahangiri, A. and Sepulveda, F., The contribution of different frequency bands in class separability of covert speech tasks for BCIs. In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, pp. 2093–2096: IEEE, 2017.
28.
go back to reference Whitham, E. M. et al., Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated. Clin. Neurophysiol. 118:1877–1888, 2007.CrossRefPubMed Whitham, E. M. et al., Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated. Clin. Neurophysiol. 118:1877–1888, 2007.CrossRefPubMed
29.
go back to reference I. BioSemi, ActiveTwo-Multichannel, DC amplifier, 24-bit resolution, biopotential measurement system with active electrodes, 2001. I. BioSemi, ActiveTwo-Multichannel, DC amplifier, 24-bit resolution, biopotential measurement system with active electrodes, 2001.
30.
go back to reference Delorme, A., and Makeig, S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1):9–21, 2004.CrossRefPubMed Delorme, A., and Makeig, S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1):9–21, 2004.CrossRefPubMed
31.
go back to reference Brumberg, J. S., Wright, E. J., Andreasen, D. S., Guenther, F. H., and Kennedy, P. R., Classification of intended phoneme production from chronic intracortical microelectrode recordings in speech-motor cortex. Front. Neurosci. 5:65, 2011.PubMedPubMedCentral Brumberg, J. S., Wright, E. J., Andreasen, D. S., Guenther, F. H., and Kennedy, P. R., Classification of intended phoneme production from chronic intracortical microelectrode recordings in speech-motor cortex. Front. Neurosci. 5:65, 2011.PubMedPubMedCentral
32.
go back to reference Greenlee, J. D. et al., Human Auditory Cortical Activation during Self- Vocalization. PLoS One 6(3):1–15, 2011.CrossRef Greenlee, J. D. et al., Human Auditory Cortical Activation during Self- Vocalization. PLoS One 6(3):1–15, 2011.CrossRef
33.
go back to reference Chi, X., Hagedorn, J. B., Schoonover, D., and D'Zmura, M., EEG-Based Discrimination of Imagined Speech Phonemes. International Journal of Bioelectromagnetism 13(4):201–206, 2011. Chi, X., Hagedorn, J. B., Schoonover, D., and D'Zmura, M., EEG-Based Discrimination of Imagined Speech Phonemes. International Journal of Bioelectromagnetism 13(4):201–206, 2011.
34.
go back to reference Gómez-Herrero, G., Automatic artifact removal (AAR) toolbox v1. 3 for MATLAB. 2007. Gómez-Herrero, G., Automatic artifact removal (AAR) toolbox v1. 3 for MATLAB. 2007.
35.
go back to reference Gomez-Herrero, G., et al., Automatic Removal of Ocular Artifacts in the EEG without an EOG Reference Channel. In: Signal Processing Symposium NORSIG, pp. 130–133, 2006. Gomez-Herrero, G., et al., Automatic Removal of Ocular Artifacts in the EEG without an EOG Reference Channel. In: Signal Processing Symposium NORSIG, pp. 130–133, 2006.
36.
go back to reference Xun, C., Chen, H., and Hu, P., Removal of Muscle Artifacts from Single-Channel EEG Based on Ensemble Empirical Mode Decomposition and Multiset Canonical Correlation Analysis. J. Appl. Math. 2014:1–10, 2014. Xun, C., Chen, H., and Hu, P., Removal of Muscle Artifacts from Single-Channel EEG Based on Ensemble Empirical Mode Decomposition and Multiset Canonical Correlation Analysis. J. Appl. Math. 2014:1–10, 2014.
37.
go back to reference McMenamin, B. W., Shackman, A. J., Greischar, L. L., and Davidson, R. J., Electromyogenic artifacts and electroencephalographic inferences revisited. NeuroImage 54:4–9, 2011.CrossRefPubMed McMenamin, B. W., Shackman, A. J., Greischar, L. L., and Davidson, R. J., Electromyogenic artifacts and electroencephalographic inferences revisited. NeuroImage 54:4–9, 2011.CrossRefPubMed
38.
go back to reference McMenamina, B. W. et al., Validation of ICA-Based Myogenic Artifact Correction for Scalp and Source-Localized EEG. Neuroimage 49(3):2416–2432, 2010.CrossRef McMenamina, B. W. et al., Validation of ICA-Based Myogenic Artifact Correction for Scalp and Source-Localized EEG. Neuroimage 49(3):2416–2432, 2010.CrossRef
39.
go back to reference Goncharova, I. I., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R., EMG contamination of EEG: spectral and topographical characteristics. Clin. Neurophysiol. 114:1580–1593, 2003.CrossRefPubMed Goncharova, I. I., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R., EMG contamination of EEG: spectral and topographical characteristics. Clin. Neurophysiol. 114:1580–1593, 2003.CrossRefPubMed
40.
go back to reference Shie, Q., and Dapang, C., Optimal biorthogonal analysis window function for discrete Gabor transform. IEEE Trans. Signal Process. 42(3):694–697, 1994.CrossRef Shie, Q., and Dapang, C., Optimal biorthogonal analysis window function for discrete Gabor transform. IEEE Trans. Signal Process. 42(3):694–697, 1994.CrossRef
41.
go back to reference Qian, S., and Chen, D., Discrete Gabor transform. IEEE Trans. Signal Process. 41(7):2429–2438, 1993.CrossRef Qian, S., and Chen, D., Discrete Gabor transform. IEEE Trans. Signal Process. 41(7):2429–2438, 1993.CrossRef
42.
go back to reference Quiroga, R. Q., Blanco, S., Rosso, O. A., Garcia, H., and Rabinowicz, A., Searching for hidden information with Gabor Transform in generalized tonic-clonic seizures. Electroencephalogr. Clin. Neurophysiol. 103(4):434–439, 1997.CrossRef Quiroga, R. Q., Blanco, S., Rosso, O. A., Garcia, H., and Rabinowicz, A., Searching for hidden information with Gabor Transform in generalized tonic-clonic seizures. Electroencephalogr. Clin. Neurophysiol. 103(4):434–439, 1997.CrossRef
43.
go back to reference Blanco, S., D'Attellis, C. E., Isaacson, S. I., Rosso, O. A., and Sirne, R. O., Time-frequency analysis of electroencephalogram series. II. Gabor and wavelet transforms. Phys. Rev. E 54(6):6661–6672, 1996.CrossRef Blanco, S., D'Attellis, C. E., Isaacson, S. I., Rosso, O. A., and Sirne, R. O., Time-frequency analysis of electroencephalogram series. II. Gabor and wavelet transforms. Phys. Rev. E 54(6):6661–6672, 1996.CrossRef
44.
go back to reference Bekhti, Y., Strohmeier, D., Jas, M., Badeau, R., and Gramfort, A., M/EEG source localization with multi-scale time-frequency dictionaries. In 6th International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 31–35, 2016. Bekhti, Y., Strohmeier, D., Jas, M., Badeau, R., and Gramfort, A., M/EEG source localization with multi-scale time-frequency dictionaries. In 6th International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 31–35, 2016.
45.
go back to reference Vuckovic, A., and Sepulveda, F., Delta band contribution in cue based single trial classification of real and imaginary wrist movements. Med. Biol. Eng. Comput. 46(6):529–539, 2008.CrossRefPubMed Vuckovic, A., and Sepulveda, F., Delta band contribution in cue based single trial classification of real and imaginary wrist movements. Med. Biol. Eng. Comput. 46(6):529–539, 2008.CrossRefPubMed
46.
go back to reference Vuckovic, A., and Sepulveda, F., Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications. Clin. Neurophysiol. 119(2):446–458, 2008.CrossRefPubMed Vuckovic, A., and Sepulveda, F., Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications. Clin. Neurophysiol. 119(2):446–458, 2008.CrossRefPubMed
47.
go back to reference Varghese, S. M., and Sushmitha, M. N., Efficient Feature Subset Selection Techniques for High Dimensional Data. IJIRCCE 2(3):3509–3515, 2014. Varghese, S. M., and Sushmitha, M. N., Efficient Feature Subset Selection Techniques for High Dimensional Data. IJIRCCE 2(3):3509–3515, 2014.
48.
go back to reference Sutha, K., and Tamilselvi, J. J., A Review of Feature Selection Algorithms for Data Mining Techniques. IJCSE 7(6):63–67, 2015. Sutha, K., and Tamilselvi, J. J., A Review of Feature Selection Algorithms for Data Mining Techniques. IJCSE 7(6):63–67, 2015.
49.
go back to reference Kumar, V., and Minz, S., Feature Selection: A literature Review. Smart Computing Review 4(3):211–229, 2014.CrossRef Kumar, V., and Minz, S., Feature Selection: A literature Review. Smart Computing Review 4(3):211–229, 2014.CrossRef
50.
go back to reference Davies, D. L., and Bouldin, D. W., A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2):224–227, 1979.CrossRefPubMed Davies, D. L., and Bouldin, D. W., A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2):224–227, 1979.CrossRefPubMed
51.
go back to reference Rojas-Thomas, J. C., New version of Davies-Bouldin index for clustering validation based on cylindrical distance. In V Chilean Workshop on Pattern Recognition, pp. 81–86, 2013. Rojas-Thomas, J. C., New version of Davies-Bouldin index for clustering validation based on cylindrical distance. In V Chilean Workshop on Pattern Recognition, pp. 81–86, 2013.
52.
go back to reference Maulik, U., and Bandyopadhyay, S., Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12):1650–1654, 2002.CrossRef Maulik, U., and Bandyopadhyay, S., Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12):1650–1654, 2002.CrossRef
53.
go back to reference Webb, A. R., Statistical pattern recognition. Hoboken: John Wiley and Sons Ltd., 2002. Webb, A. R., Statistical pattern recognition. Hoboken: John Wiley and Sons Ltd., 2002.
54.
go back to reference Vidaurre, C., Scherer, R., Cabeza, R., Schlogl, A., and Pfurtscheller, G., Study of discriminant analysis applied to motor imagery bipolar data. Med. Biol. Eng. Comput. 45(1):61–68, 2007.CrossRefPubMed Vidaurre, C., Scherer, R., Cabeza, R., Schlogl, A., and Pfurtscheller, G., Study of discriminant analysis applied to motor imagery bipolar data. Med. Biol. Eng. Comput. 45(1):61–68, 2007.CrossRefPubMed
55.
go back to reference Porcaro, C., Medaglia, M. T., and Krott, A., Removing speech artifacts from electroencephalographic recordings during overt picture naming. Neuroimage 105:171–180, 15 2015.CrossRefPubMed Porcaro, C., Medaglia, M. T., and Krott, A., Removing speech artifacts from electroencephalographic recordings during overt picture naming. Neuroimage 105:171–180, 15 2015.CrossRefPubMed
56.
go back to reference Jurcak, V., Tsuzuki, D., and Dan, I., 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34:1600–1611, 2007.CrossRefPubMed Jurcak, V., Tsuzuki, D., and Dan, I., 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34:1600–1611, 2007.CrossRefPubMed
57.
go back to reference Cortical Functions Rererence. Trans Cranial Technologies ldt. Wanchai, Hong Kong, 2012. Cortical Functions Rererence. Trans Cranial Technologies ldt. Wanchai, Hong Kong, 2012.
58.
go back to reference Asplund, C. L., Todd, J. J., Snyder, A. P., and Marois, R., A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat. Neurosci. 13(4):507–514, 2010.CrossRefPubMedPubMedCentral Asplund, C. L., Todd, J. J., Snyder, A. P., and Marois, R., A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat. Neurosci. 13(4):507–514, 2010.CrossRefPubMedPubMedCentral
59.
go back to reference Jahangiri, A., Chau, J. M., Achanccaray, D. R., and Sepulveda, F., Covert speech vs. motor imagery: a comparative study of class separability in identical environments. In: Engineering in Medicine and Biology Society (EMBC), 2018 40th Annual International Conference of the IEEE, IEEE, 2018. Jahangiri, A., Chau, J. M., Achanccaray, D. R., and Sepulveda, F., Covert speech vs. motor imagery: a comparative study of class separability in identical environments. In: Engineering in Medicine and Biology Society (EMBC), 2018 40th Annual International Conference of the IEEE, IEEE, 2018.
60.
go back to reference Dhanjal, N. S., Handunnetthi, L., Patel, M. C., and Wise, R. J. S., Perceptual Systems Controlling Speech Production. J. Neurosci. 28(40):9969–9975, 2008.CrossRefPubMedPubMedCentral Dhanjal, N. S., Handunnetthi, L., Patel, M. C., and Wise, R. J. S., Perceptual Systems Controlling Speech Production. J. Neurosci. 28(40):9969–9975, 2008.CrossRefPubMedPubMedCentral
61.
go back to reference Watkins, K., and Paus, T., Modulation of Motor Excitability during Speech Perception: The Role of Broca’s Area. Cogn. Neurosci. 16(6):978–987, 2004.CrossRef Watkins, K., and Paus, T., Modulation of Motor Excitability during Speech Perception: The Role of Broca’s Area. Cogn. Neurosci. 16(6):978–987, 2004.CrossRef
62.
go back to reference Tian, X., and Poeppel, D., Mental imagery of speech: linking motor and pereptual systems through internal simulation and estimation. Frontiers in Human Neuroscience. 2, 2012. Tian, X., and Poeppel, D., Mental imagery of speech: linking motor and pereptual systems through internal simulation and estimation. Frontiers in Human Neuroscience. 2, 2012.
63.
go back to reference Tian, X., and Poeppel, D., Mental imagery of speech and movement implicates the dynamics of internal forward models. Front. Psychol. 1:166, 2010.PubMedPubMedCentral Tian, X., and Poeppel, D., Mental imagery of speech and movement implicates the dynamics of internal forward models. Front. Psychol. 1:166, 2010.PubMedPubMedCentral
64.
go back to reference McGuire, P. K., Silbersweig, D. A., Murray, R. M., David, A. S., Frackowiak, R. S. J., and Frith, C. D., Functional anatomy of inner speech and auditory verbal imagery. Psychol. Med. 26(1):29–38, 1996.CrossRefPubMed McGuire, P. K., Silbersweig, D. A., Murray, R. M., David, A. S., Frackowiak, R. S. J., and Frith, C. D., Functional anatomy of inner speech and auditory verbal imagery. Psychol. Med. 26(1):29–38, 1996.CrossRefPubMed
65.
go back to reference Schiller, N. O., Bles, M., and Jansma, B. M., Tracking the time course of phonological encoding in speech production: an event-related brain potential study. Cogn. Brain Res. 17:819–831, 2003.CrossRef Schiller, N. O., Bles, M., and Jansma, B. M., Tracking the time course of phonological encoding in speech production: an event-related brain potential study. Cogn. Brain Res. 17:819–831, 2003.CrossRef
66.
go back to reference Geva, S., Jones, P. S., Crinion, J. T., Price, C. J., Baron, J. C., and Warburton, E. A., The neural correlates of inner speech defined by voxel-based lesion–symptom mapping. Brain 134:3071–3082, 2011.CrossRefPubMedPubMedCentral Geva, S., Jones, P. S., Crinion, J. T., Price, C. J., Baron, J. C., and Warburton, E. A., The neural correlates of inner speech defined by voxel-based lesion–symptom mapping. Brain 134:3071–3082, 2011.CrossRefPubMedPubMedCentral
Metadata
Title
The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data
Authors
Amir Jahangiri
Francisco Sepulveda
Publication date
01-02-2019
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 2/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1137-9

Other articles of this Issue 2/2019

Journal of Medical Systems 2/2019 Go to the issue