Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Research

Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin

Authors: Alba Agudo-López, Elena Prieto-García, José Alemán, Carlos Pérez, C. Vanesa Díaz-García, Lucía Parrilla-Rubio, Silvia Cabrera, Carmen Navarro-Ranninger, Hernán Cortés-Funes, José A. López-Martín, M. Teresa Agulló-Ortuño

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Background

Cisplatin is a potent antitumor agent. However, toxicity and primary and secondary resistance are major limitations of cisplatin-based chemotherapy, leading to therapeutic failure. We have previously reported that mono-sulfonamide platinum complexes have good antitumor activity against different tumoral cell lines and with a different and better cytotoxic profile than cisplatin. Besides, N-sulfonamides have been used extensively in medicinal chemistry as bactericides, anticonvulsant, inhibitors of the carbonic anhydrase, inhibitors of histone deacetylases, and inhibitors of microtubule polymerization, among others.

Methods

We aimed to compare the cytotoxic effects of cisplatin and a trans-sulfonamide-platinum-complex (TSPC), in two human melanoma cell lines that differ in their TP53 status: SK-MEL-5, TP53 wild type, and SK-MEL-28, TP53 mutated. We performed cytotoxicity assays with both drugs, alone and in combination, cell cycle analyses, western blotting and immunoprecipitation, and fluorescence immunocytochemistry.

Results

TSPC had similar antiproliferative activity than cisplatin against SK-MEL-5 (3.24 ± 1.08 vs 2.89 ± 1.12 μM) and higher against SK-MEL-28 cells (5.83 ± 1.06 vs 10.17 ± 1.29 μM). Combination of both drugs inhibited proliferation in both cell lines, being especially important in SK-MEL-28, and showing a synergistic effect. In contrast to cisplatin, TSPC caused G1 instead G2/M arrest in both cell lines. Our present findings indicate that the G1 arrest is associated with the induction of CDKN1A and CDKN1B proteins, and that this response is also present in melanoma cells containing TP53 mutated. Also, strong accumulation of CDKN1A and CDKN1B in cells nuclei was seen upon TSPC treatment in both cell lines.

Conclusions

Overall, these findings provide a new promising TSPC compound with in vitro antitumor activity against melanoma cell lines, and with a different mechanism of action from that of cisplatin. Besides, TSPC synergism with cisplatin facilitates its potential use for co-treatment to reduce toxicity and resistance against cisplatin. TSPC remains a promising lead compound for the generation of novel antineoplastic agent and to explore its synergism with other DNA damaging agents.
Literature
1.
go back to reference Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.CrossRefPubMed Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.CrossRefPubMed
2.
go back to reference Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.CrossRefPubMed Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.CrossRefPubMed
4.
go back to reference Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M, et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One. 2014;9(2), e88193.CrossRefPubMedPubMedCentral Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M, et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One. 2014;9(2), e88193.CrossRefPubMedPubMedCentral
5.
go back to reference Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016;77(6):1103–24.CrossRefPubMed Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016;77(6):1103–24.CrossRefPubMed
6.
go back to reference Herrera JM, Mendes F, Gama S, Santos I, Navarro Ranninger C, Cabrera S, et al. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg Chem. 2014;53(23):12627–34.CrossRefPubMed Herrera JM, Mendes F, Gama S, Santos I, Navarro Ranninger C, Cabrera S, et al. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg Chem. 2014;53(23):12627–34.CrossRefPubMed
7.
go back to reference Cetraz M, Sen V, Schoch S, Streule K, Golubev V, Hartwig A, et al. Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells. Arch Toxicol. 2017;91(2):785–97. Cetraz M, Sen V, Schoch S, Streule K, Golubev V, Hartwig A, et al. Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells. Arch Toxicol. 2017;91(2):785–97.
8.
go back to reference Ma J, Wang Q, Yang X, Hao W, Huang Z, Zhang J, et al. Glycosylated platinum(iv) prodrugs demonstrated significant therapeutic efficacy in cancer cells and minimized side-effects. Dalton Trans. 2016;45(29):11830–8.CrossRefPubMed Ma J, Wang Q, Yang X, Hao W, Huang Z, Zhang J, et al. Glycosylated platinum(iv) prodrugs demonstrated significant therapeutic efficacy in cancer cells and minimized side-effects. Dalton Trans. 2016;45(29):11830–8.CrossRefPubMed
9.
go back to reference Chang JY, Hsieh HP, Chang CY, Hsu KS, Chiang YF, Chen CM, et al. 7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents. J Med Chem. 2006;49(23):6656–9.CrossRefPubMed Chang JY, Hsieh HP, Chang CY, Hsu KS, Chiang YF, Chen CM, et al. 7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents. J Med Chem. 2006;49(23):6656–9.CrossRefPubMed
10.
go back to reference Liu Z, Zhou Z, Tian W, Fan X, Xue D, Yu L, et al. Discovery of novel 2-N-aryl-substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. ChemMedChem. 2012;7(4):680–93.CrossRefPubMed Liu Z, Zhou Z, Tian W, Fan X, Xue D, Yu L, et al. Discovery of novel 2-N-aryl-substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. ChemMedChem. 2012;7(4):680–93.CrossRefPubMed
11.
go back to reference Del Solar V, Quinones-Lombrana A, Cabrera S, Padron JM, Rios-Luci C, Alvarez-Valdes A, et al. Expanding the synthesis of new trans-sulfonamide platinum complexes: cytotoxicity, SAR, fluorescent cell assays and stability studies. J Inorg Biochem. 2013;127:128–40.CrossRefPubMed Del Solar V, Quinones-Lombrana A, Cabrera S, Padron JM, Rios-Luci C, Alvarez-Valdes A, et al. Expanding the synthesis of new trans-sulfonamide platinum complexes: cytotoxicity, SAR, fluorescent cell assays and stability studies. J Inorg Biochem. 2013;127:128–40.CrossRefPubMed
12.
go back to reference Cossa G, Gatti L, Zunino F, Perego P. Strategies to improve the efficacy of platinum compounds. Curr Med Chem. 2009;16(19):2355–65.CrossRefPubMed Cossa G, Gatti L, Zunino F, Perego P. Strategies to improve the efficacy of platinum compounds. Curr Med Chem. 2009;16(19):2355–65.CrossRefPubMed
13.
go back to reference Lovejoy KS, Serova M, Bieche I, Emami S, D’Incalci M, Broggini M, et al. Spectrum of cellular responses to pyriplatin, a monofunctional cationic antineoplastic platinum(II) compound, in human cancer cells. Mol Cancer Ther. 2011;10(9):1709–19.CrossRefPubMedPubMedCentral Lovejoy KS, Serova M, Bieche I, Emami S, D’Incalci M, Broggini M, et al. Spectrum of cellular responses to pyriplatin, a monofunctional cationic antineoplastic platinum(II) compound, in human cancer cells. Mol Cancer Ther. 2011;10(9):1709–19.CrossRefPubMedPubMedCentral
15.
go back to reference Godoy LC, Anderson CT, Chowdhury R, Trudel LJ, Wogan GN. Endogenously produced nitric oxide mitigates sensitivity of melanoma cells to cisplatin. Proc Natl Acad Sci U S A. 2012;109(50):20373–8.CrossRefPubMedPubMedCentral Godoy LC, Anderson CT, Chowdhury R, Trudel LJ, Wogan GN. Endogenously produced nitric oxide mitigates sensitivity of melanoma cells to cisplatin. Proc Natl Acad Sci U S A. 2012;109(50):20373–8.CrossRefPubMedPubMedCentral
16.
go back to reference Alrwas A, Papadopoulos NE, Cain S, Patel SP, Kim KB, Deburr TL, et al. Phase I trial of biochemotherapy with cisplatin, temozolomide, and dose escalation of nab-paclitaxel combined with interleukin-2 and interferon-alpha in patients with metastatic melanoma. Melanoma Res. 2014;24(4):342–8.CrossRefPubMedPubMedCentral Alrwas A, Papadopoulos NE, Cain S, Patel SP, Kim KB, Deburr TL, et al. Phase I trial of biochemotherapy with cisplatin, temozolomide, and dose escalation of nab-paclitaxel combined with interleukin-2 and interferon-alpha in patients with metastatic melanoma. Melanoma Res. 2014;24(4):342–8.CrossRefPubMedPubMedCentral
17.
go back to reference O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997;57(19):4285–300.PubMed O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997;57(19):4285–300.PubMed
18.
go back to reference Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.CrossRefPubMed Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.CrossRefPubMed
19.
go back to reference Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed
20.
go back to reference He G, Kuang J, Khokhar AR, Siddik ZH. The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol. 2011;122(2):402–9.CrossRefPubMedPubMedCentral He G, Kuang J, Khokhar AR, Siddik ZH. The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol. 2011;122(2):402–9.CrossRefPubMedPubMedCentral
21.
go back to reference Park CM, Park MJ, Kwak HJ, Moon SI, Yoo DH, Lee HC, et al. Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin. Int J Oncol. 2006;28(1):119–25.PubMed Park CM, Park MJ, Kwak HJ, Moon SI, Yoo DH, Lee HC, et al. Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin. Int J Oncol. 2006;28(1):119–25.PubMed
22.
go back to reference Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–71.CrossRefPubMedPubMedCentral Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–71.CrossRefPubMedPubMedCentral
23.
go back to reference Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5(4):366–73.CrossRefPubMed Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5(4):366–73.CrossRefPubMed
24.
go back to reference Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14(2):159–69.CrossRefPubMed Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14(2):159–69.CrossRefPubMed
25.
go back to reference Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002;1(8):639–49.PubMed Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002;1(8):639–49.PubMed
26.
go back to reference Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer. 2011;2(9):889–99.CrossRefPubMedPubMedCentral Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer. 2011;2(9):889–99.CrossRefPubMedPubMedCentral
27.
go back to reference Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2013;23(5):618–33.CrossRefPubMed Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2013;23(5):618–33.CrossRefPubMed
28.
go back to reference Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase inhibitors: an update. Mini Rev Med Chem. 2012;12(1):62–73.CrossRefPubMed Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase inhibitors: an update. Mini Rev Med Chem. 2012;12(1):62–73.CrossRefPubMed
29.
go back to reference Romanov VS, Pospelov VA, Pospelova TV. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. Biochemistry (Mosc). 2012;77(6):575–84.CrossRef Romanov VS, Pospelov VA, Pospelova TV. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. Biochemistry (Mosc). 2012;77(6):575–84.CrossRef
31.
go back to reference Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13(2):65–70.CrossRefPubMed Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13(2):65–70.CrossRefPubMed
32.
go back to reference Abella N, Brun S, Calvo M, Tapia O, Weber JD, Berciano MT, et al. Nucleolar disruption ensures nuclear accumulation of p21 upon DNA damage. Traffic. 2010;11(6):743–55.CrossRefPubMed Abella N, Brun S, Calvo M, Tapia O, Weber JD, Berciano MT, et al. Nucleolar disruption ensures nuclear accumulation of p21 upon DNA damage. Traffic. 2010;11(6):743–55.CrossRefPubMed
33.
go back to reference Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. Embo J. 1999;18(5):1223–34.CrossRefPubMedPubMedCentral Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. Embo J. 1999;18(5):1223–34.CrossRefPubMedPubMedCentral
34.
go back to reference Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene. 1998;17(8):931–9.CrossRefPubMed Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene. 1998;17(8):931–9.CrossRefPubMed
35.
go back to reference Bales ES, Dietrich C, Bandyopadhyay D, Schwahn DJ, Xu W, Didenko V, et al. High levels of expression of p27KIP1 and cyclin E in invasive primary malignant melanomas. J Invest Dermatol. 1999;113(6):1039–46.CrossRefPubMed Bales ES, Dietrich C, Bandyopadhyay D, Schwahn DJ, Xu W, Didenko V, et al. High levels of expression of p27KIP1 and cyclin E in invasive primary malignant melanomas. J Invest Dermatol. 1999;113(6):1039–46.CrossRefPubMed
36.
go back to reference Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res. 2004;10(11):3815–24.CrossRefPubMed Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res. 2004;10(11):3815–24.CrossRefPubMed
37.
go back to reference Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000;183(1):10–7.CrossRefPubMed Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000;183(1):10–7.CrossRefPubMed
38.
go back to reference Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 2003;5(6):R242–9.CrossRefPubMedPubMedCentral Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 2003;5(6):R242–9.CrossRefPubMedPubMedCentral
39.
go back to reference Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 2010;120(10):3594–605.CrossRefPubMedPubMedCentral Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 2010;120(10):3594–605.CrossRefPubMedPubMedCentral
40.
go back to reference Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, et al. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 2011;11:399.CrossRefPubMedPubMedCentral Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, et al. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 2011;11:399.CrossRefPubMedPubMedCentral
Metadata
Title
Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin
Authors
Alba Agudo-López
Elena Prieto-García
José Alemán
Carlos Pérez
C. Vanesa Díaz-García
Lucía Parrilla-Rubio
Silvia Cabrera
Carmen Navarro-Ranninger
Hernán Cortés-Funes
José A. López-Martín
M. Teresa Agulló-Ortuño
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0618-7

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine