Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells

Authors: Ingun Heiene Tveteraas, Kristin Meisdalen Müller, Monica Aasrum, John Ødegård, Olav Dajani, Tormod Guren, Dagny Sandnes, Thoralf Christoffersen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Background

It is important to understand the mechanisms by which the cells integrate signals from different receptors. Several lines of evidence implicate epidermal growth factor (EGF) receptor (EGFR) in the pathophysiology of hepatocarcinomas. Data also suggest a role of prostaglandins in some of these tumours, through their receptors of the G protein-coupled receptor (GPCR) family. In this study we have investigated mechanisms of interaction between signalling from prostaglandin receptors and EGFR in hepatocarcinoma cells.

Methods

The rat hepatocarcinoma cell line MH1C1 and normal rat hepatocytes in primary culture were stimulated with EGF or prostaglandin E2 (PGE2) and in some experiments also PGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA, phosphorylation of proteins in signalling pathways was assessed by Western blotting, mRNA expression of prostaglandin receptors was determined using qRT-PCR, accumulation of inositol phosphates was measured by incorporation of radiolabelled inositol, and cAMP was determined by radioimmunoassay.

Results

In the MH1C1 hepatocarcinoma cells, stimulation with PGE2 or PGF caused phosphorylation of the EGFR, Akt, and ERK, which could be blocked by the EGFR tyrosine kinase inhibitor gefitinib. This did not occur in primary hepatocytes. qRT-PCR revealed expression of EP1, EP4, and FP receptor mRNA in MH1C1 cells. PGE2 stimulated accumulation of inositol phosphates but not cAMP in these cells, suggesting signalling via PLCβ. While pretreatment with EP1 and EP4 receptor antagonists did not inhibit the effect of PGE2, pretreatment with an FP receptor antagonist blocked the phosphorylation of EGFR, Akt and ERK. Further studies suggested that the PGE2-induced signal was mediated via Ca2+ release and not PKC activation, and that it proceeded through Src and shedding of membrane-bound EGFR ligand precursors by proteinases of the ADAM family.

Conclusion

The results indicate that in MH1C1 cells, unlike normal hepatocytes, PGE2 activates the MEK/ERK and PI3K/Akt pathways by transactivation of the EGFR, thus diversifying the GPCR-mediated signal. The data also suggest that the underlying mechanisms in these cells involve FP receptors, PLCβ, Ca2+, Src, and proteinase-mediated release of membrane-associated EGFR ligand(s).
Appendix
Available only for authorised users
Literature
1.
go back to reference Daub H, Weiss FU, Wallasch C, Ullrich A: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996, 379 (6565): 557-560. 10.1038/379557a0.CrossRefPubMed Daub H, Weiss FU, Wallasch C, Ullrich A: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996, 379 (6565): 557-560. 10.1038/379557a0.CrossRefPubMed
2.
go back to reference Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999, 402 (6764): 884-888.PubMed Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999, 402 (6764): 884-888.PubMed
3.
go back to reference Buchanan FG, Wang D, Bargiacchi F, DuBois RN: Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003, 278 (37): 35451-35457. 10.1074/jbc.M302474200.CrossRefPubMed Buchanan FG, Wang D, Bargiacchi F, DuBois RN: Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003, 278 (37): 35451-35457. 10.1074/jbc.M302474200.CrossRefPubMed
4.
go back to reference Schafer B, Marg B, Gschwind A, Ullrich A: Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem. 2004, 279 (46): 47929-47938. 10.1074/jbc.M400129200.CrossRefPubMed Schafer B, Marg B, Gschwind A, Ullrich A: Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem. 2004, 279 (46): 47929-47938. 10.1074/jbc.M400129200.CrossRefPubMed
5.
go back to reference Bhola NE, Grandis JR: Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008, 13: 1857-1865. 10.2741/2805.CrossRefPubMed Bhola NE, Grandis JR: Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci. 2008, 13: 1857-1865. 10.2741/2805.CrossRefPubMed
6.
go back to reference Carpenter G, Cohen S: Epidermal growth factor. J Biol Chem. 1990, 265 (14): 7709-7712.PubMed Carpenter G, Cohen S: Epidermal growth factor. J Biol Chem. 1990, 265 (14): 7709-7712.PubMed
7.
go back to reference Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW: Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003, 284 (1): 31-53. 10.1016/S0014-4827(02)00098-8.CrossRefPubMed Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW: Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003, 284 (1): 31-53. 10.1016/S0014-4827(02)00098-8.CrossRefPubMed
8.
go back to reference Holbro T, Civenni G, Hynes NE: The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003, 284 (1): 99-110. 10.1016/S0014-4827(02)00099-X.CrossRefPubMed Holbro T, Civenni G, Hynes NE: The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003, 284 (1): 99-110. 10.1016/S0014-4827(02)00099-X.CrossRefPubMed
9.
go back to reference Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006, 366 (1): 2-16. 10.1016/j.gene.2005.10.018.CrossRefPubMed Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006, 366 (1): 2-16. 10.1016/j.gene.2005.10.018.CrossRefPubMed
10.
go back to reference Christoffersen T, Guren TK, Spindler KL, Dahl O, Lonning PE, Gjertsen BT: Cancer therapy targeted at cellular signal transduction mechanisms: strategies, clinical results, and unresolved issues. Eur J Pharmacol. 2009, 625 (1–3): 6-22.CrossRefPubMed Christoffersen T, Guren TK, Spindler KL, Dahl O, Lonning PE, Gjertsen BT: Cancer therapy targeted at cellular signal transduction mechanisms: strategies, clinical results, and unresolved issues. Eur J Pharmacol. 2009, 625 (1–3): 6-22.CrossRefPubMed
11.
go back to reference Ciardiello F, Tortora G: EGFR antagonists in cancer treatment. N Engl J Med. 2008, 358 (11): 1160-1174. 10.1056/NEJMra0707704.CrossRefPubMed Ciardiello F, Tortora G: EGFR antagonists in cancer treatment. N Engl J Med. 2008, 358 (11): 1160-1174. 10.1056/NEJMra0707704.CrossRefPubMed
12.
go back to reference Müller KM, Tveteraas IH, Aasrum M, Odegard J, Dawood M, Dajani O, Christoffersen T, Sandnes DL: Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011, 11: 421-10.1186/1471-2407-11-421.PubMedCentralCrossRefPubMed Müller KM, Tveteraas IH, Aasrum M, Odegard J, Dawood M, Dajani O, Christoffersen T, Sandnes DL: Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011, 11: 421-10.1186/1471-2407-11-421.PubMedCentralCrossRefPubMed
13.
go back to reference Sand TE, Christoffersen T: Temporal requirement for epidermal growth factor and insulin in the stimulation of hepatocyte DNA synthesis. J Cell Physiol. 1987, 131 (2): 141-148. 10.1002/jcp.1041310202.CrossRefPubMed Sand TE, Christoffersen T: Temporal requirement for epidermal growth factor and insulin in the stimulation of hepatocyte DNA synthesis. J Cell Physiol. 1987, 131 (2): 141-148. 10.1002/jcp.1041310202.CrossRefPubMed
14.
go back to reference Mead JE, Fausto N: Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989, 86 (5): 1558-1562. 10.1073/pnas.86.5.1558.PubMedCentralCrossRefPubMed Mead JE, Fausto N: Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989, 86 (5): 1558-1562. 10.1073/pnas.86.5.1558.PubMedCentralCrossRefPubMed
15.
go back to reference Christoffersen T, Thoresen GH, Dajani OF, Melien Ø, Guren T, Refsnes M, Sandnes D: Mechanisms of hepatocyte growth regulation by hormones and growth factor. The hepatocyte review. edn. Edited by AM BMaE. 2000, Kluwer Academic Publishers, Dordrecht/Boston/London, 209-246.CrossRef Christoffersen T, Thoresen GH, Dajani OF, Melien Ø, Guren T, Refsnes M, Sandnes D: Mechanisms of hepatocyte growth regulation by hormones and growth factor. The hepatocyte review. edn. Edited by AM BMaE. 2000, Kluwer Academic Publishers, Dordrecht/Boston/London, 209-246.CrossRef
16.
go back to reference Scheving LA, Stevenson MC, Taylormoore JM, Traxler P, Russell WE: Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation. Biochem Biophys Res Commun. 2002, 290 (1): 197-203. 10.1006/bbrc.2001.6157.CrossRefPubMed Scheving LA, Stevenson MC, Taylormoore JM, Traxler P, Russell WE: Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation. Biochem Biophys Res Commun. 2002, 290 (1): 197-203. 10.1006/bbrc.2001.6157.CrossRefPubMed
17.
go back to reference Farazi PA, DePinho RA: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006, 6 (9): 674-687. 10.1038/nrc1934.CrossRefPubMed Farazi PA, DePinho RA: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006, 6 (9): 674-687. 10.1038/nrc1934.CrossRefPubMed
18.
go back to reference Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM: Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007, 27 (1): 55-76. 10.1055/s-2006-960171.CrossRefPubMed Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM: Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007, 27 (1): 55-76. 10.1055/s-2006-960171.CrossRefPubMed
19.
go back to reference Whittaker S, Marais R, Zhu AX: The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010, 29 (36): 4989-5005. 10.1038/onc.2010.236.CrossRefPubMed Whittaker S, Marais R, Zhu AX: The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010, 29 (36): 4989-5005. 10.1038/onc.2010.236.CrossRefPubMed
20.
go back to reference Berasain C, Castillo J, Prieto J, Avila MA: New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver Int. 2007, 27 (2): 174-185. 10.1111/j.1478-3231.2006.01424.x.CrossRefPubMed Berasain C, Castillo J, Prieto J, Avila MA: New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver Int. 2007, 27 (2): 174-185. 10.1111/j.1478-3231.2006.01424.x.CrossRefPubMed
21.
go back to reference Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT: TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990, 61 (6): 1137-1146. 10.1016/0092-8674(90)90076-Q.CrossRefPubMed Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT: TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990, 61 (6): 1137-1146. 10.1016/0092-8674(90)90076-Q.CrossRefPubMed
22.
go back to reference Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC: Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol. 1993, 13 (1): 320-330.PubMedCentralCrossRefPubMed Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC: Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol. 1993, 13 (1): 320-330.PubMedCentralCrossRefPubMed
23.
go back to reference Ito Y, Takeda T, Sakon M, Tsujimoto M, Higashiyama S, Noda K, Miyoshi E, Monden M, Matsuura N: Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer. 2001, 84 (10): 1377-1383. 10.1054/bjoc.2000.1580.PubMedCentralCrossRefPubMed Ito Y, Takeda T, Sakon M, Tsujimoto M, Higashiyama S, Noda K, Miyoshi E, Monden M, Matsuura N: Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer. 2001, 84 (10): 1377-1383. 10.1054/bjoc.2000.1580.PubMedCentralCrossRefPubMed
24.
go back to reference Hopfner M, Sutter AP, Huether A, Schuppan D, Zeitz M, Scherubl H: Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J Hepatol. 2004, 41 (6): 1008-1016. 10.1016/j.jhep.2004.08.024.CrossRefPubMed Hopfner M, Sutter AP, Huether A, Schuppan D, Zeitz M, Scherubl H: Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J Hepatol. 2004, 41 (6): 1008-1016. 10.1016/j.jhep.2004.08.024.CrossRefPubMed
25.
go back to reference Huether A, Hopfner M, Baradari V, Schuppan D, Scherubl H: EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochem Pharmacol. 2005, 70 (11): 1568-1578. 10.1016/j.bcp.2005.09.007.CrossRefPubMed Huether A, Hopfner M, Baradari V, Schuppan D, Scherubl H: EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochem Pharmacol. 2005, 70 (11): 1568-1578. 10.1016/j.bcp.2005.09.007.CrossRefPubMed
26.
27.
go back to reference Breyer RM, Bagdassarian CK, Myers SA, Breyer MD: Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001, 41: 661-690. 10.1146/annurev.pharmtox.41.1.661.CrossRefPubMed Breyer RM, Bagdassarian CK, Myers SA, Breyer MD: Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001, 41: 661-690. 10.1146/annurev.pharmtox.41.1.661.CrossRefPubMed
29.
go back to reference Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE: Cyclooxygenase in biology and disease. FASEB J. 1998, 12 (12): 1063-1073.PubMed Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE: Cyclooxygenase in biology and disease. FASEB J. 1998, 12 (12): 1063-1073.PubMed
30.
go back to reference Gupta RA, Dubois RN: Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001, 1 (1): 11-21. 10.1038/35094017.CrossRefPubMed Gupta RA, Dubois RN: Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001, 1 (1): 11-21. 10.1038/35094017.CrossRefPubMed
31.
go back to reference Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM: Cyclooxygenases in cancer: progress and perspective. Cancer Lett. 2004, 215 (1): 1-20. 10.1016/j.canlet.2004.06.014.CrossRefPubMed Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM: Cyclooxygenases in cancer: progress and perspective. Cancer Lett. 2004, 215 (1): 1-20. 10.1016/j.canlet.2004.06.014.CrossRefPubMed
32.
go back to reference Andreis PG, Whitfield JF, Armato U: Stimulation of DNA synthesis and mitosis of hepatocytes in primary cultures of neonatal rat liver by arachidonic acid and prostaglandins. Exp Cell Res. 1981, 134 (2): 265-272. 10.1016/0014-4827(81)90425-0.CrossRefPubMed Andreis PG, Whitfield JF, Armato U: Stimulation of DNA synthesis and mitosis of hepatocytes in primary cultures of neonatal rat liver by arachidonic acid and prostaglandins. Exp Cell Res. 1981, 134 (2): 265-272. 10.1016/0014-4827(81)90425-0.CrossRefPubMed
33.
go back to reference Refsnes M, Dajani OF, Sandnes D, Thoresen GH, Rottingen JA, Iversen JG, Christoffersen T: On the mechanisms of the growth-promoting effect of prostaglandins in hepatocytes: the relationship between stimulation of DNA synthesis and signaling mediated by adenylyl cyclase and phosphoinositide-specific phospholipase C. J Cell Physiol. 1995, 164 (3): 465-473. 10.1002/jcp.1041640304.CrossRefPubMed Refsnes M, Dajani OF, Sandnes D, Thoresen GH, Rottingen JA, Iversen JG, Christoffersen T: On the mechanisms of the growth-promoting effect of prostaglandins in hepatocytes: the relationship between stimulation of DNA synthesis and signaling mediated by adenylyl cyclase and phosphoinositide-specific phospholipase C. J Cell Physiol. 1995, 164 (3): 465-473. 10.1002/jcp.1041640304.CrossRefPubMed
34.
go back to reference Refsnes M, Thoresen GH, Dajani OF, Christoffersen T: Stimulation of hepatocyte DNA synthesis by prostaglandin E2 and prostaglandin F2 alpha: additivity with the effect of norepinephrine, and synergism with epidermal growth factor. J Cell Physiol. 1994, 159 (1): 35-40. 10.1002/jcp.1041590106.CrossRefPubMed Refsnes M, Thoresen GH, Dajani OF, Christoffersen T: Stimulation of hepatocyte DNA synthesis by prostaglandin E2 and prostaglandin F2 alpha: additivity with the effect of norepinephrine, and synergism with epidermal growth factor. J Cell Physiol. 1994, 159 (1): 35-40. 10.1002/jcp.1041590106.CrossRefPubMed
35.
go back to reference Koga H, Sakisaka S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K, Harada M, Kusaba T, Tanaka M, Kimura R, et al: Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology. 1999, 29 (3): 688-696. 10.1002/hep.510290355.CrossRefPubMed Koga H, Sakisaka S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K, Harada M, Kusaba T, Tanaka M, Kimura R, et al: Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology. 1999, 29 (3): 688-696. 10.1002/hep.510290355.CrossRefPubMed
36.
go back to reference Tang TC, Poon RT, Lau CP, Xie D, Fan ST: Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma. World J Gastroenterol. 2005, 11 (13): 1896-1902.PubMedCentralCrossRefPubMed Tang TC, Poon RT, Lau CP, Xie D, Fan ST: Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma. World J Gastroenterol. 2005, 11 (13): 1896-1902.PubMedCentralCrossRefPubMed
37.
go back to reference Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T: Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008, 214 (2): 371-380. 10.1002/jcp.21205.CrossRefPubMed Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T: Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008, 214 (2): 371-380. 10.1002/jcp.21205.CrossRefPubMed
38.
go back to reference Nilssen LS, Odegard J, Thoresen GH, Molven A, Sandnes D, Christoffersen T: G protein-coupled receptor agonist-stimulated expression of ATF3/LRF-1 and c-myc and comitogenic effects in hepatocytes do not require EGF receptor transactivation. J Cell Physiol. 2004, 201 (3): 349-358. 10.1002/jcp.20075.CrossRefPubMed Nilssen LS, Odegard J, Thoresen GH, Molven A, Sandnes D, Christoffersen T: G protein-coupled receptor agonist-stimulated expression of ATF3/LRF-1 and c-myc and comitogenic effects in hepatocytes do not require EGF receptor transactivation. J Cell Physiol. 2004, 201 (3): 349-358. 10.1002/jcp.20075.CrossRefPubMed
39.
go back to reference Richardson UI, Tashjian AH, Levine L: Establishment of a clonal strain of hepatoma cells which secrete albumin. J Cell Biol. 1969, 40 (1): 236-247. 10.1083/jcb.40.1.236.PubMedCentralCrossRefPubMed Richardson UI, Tashjian AH, Levine L: Establishment of a clonal strain of hepatoma cells which secrete albumin. J Cell Biol. 1969, 40 (1): 236-247. 10.1083/jcb.40.1.236.PubMedCentralCrossRefPubMed
40.
go back to reference Christoffersen T, Refsnes M, Bronstad GO, Ostby E, Huse J, Haffner F, Sand TE, Hunt NH, Sonne O: Changes in hormone responsiveness and cyclic AMP metabolism in rat hepatocytes during primary culture and effects of supplementing the medium with insulin and dexamethasone. Eur J Biochem. 1984, 138 (2): 217-226. 10.1111/j.1432-1033.1984.tb07904.x.CrossRefPubMed Christoffersen T, Refsnes M, Bronstad GO, Ostby E, Huse J, Haffner F, Sand TE, Hunt NH, Sonne O: Changes in hormone responsiveness and cyclic AMP metabolism in rat hepatocytes during primary culture and effects of supplementing the medium with insulin and dexamethasone. Eur J Biochem. 1984, 138 (2): 217-226. 10.1111/j.1432-1033.1984.tb07904.x.CrossRefPubMed
41.
go back to reference Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000, 25 (2): 169-193. 10.1677/jme.0.0250169.CrossRefPubMed Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000, 25 (2): 169-193. 10.1677/jme.0.0250169.CrossRefPubMed
42.
go back to reference Skomedal T, Grynne B, Osnes JB, Sjetnan AE, Oye I: A radioimmunoassay for cyclic AMP (cAMP) obtained by acetylation of both unlabeled and labeled (3 H-cAMP) ligand, or of unlabeled ligand only. Acta Pharmacol Toxicol (Copenh). 1980, 46 (3): 200-204.CrossRef Skomedal T, Grynne B, Osnes JB, Sjetnan AE, Oye I: A radioimmunoassay for cyclic AMP (cAMP) obtained by acetylation of both unlabeled and labeled (3 H-cAMP) ligand, or of unlabeled ligand only. Acta Pharmacol Toxicol (Copenh). 1980, 46 (3): 200-204.CrossRef
43.
44.
go back to reference Ji R, Chou CL, Xu W, Chen XB, Woodward DF, Regan JW: EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Mol Pharmacol. 2010, 77 (6): 1025-1036. 10.1124/mol.110.063933.PubMedCentralCrossRefPubMed Ji R, Chou CL, Xu W, Chen XB, Woodward DF, Regan JW: EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Mol Pharmacol. 2010, 77 (6): 1025-1036. 10.1124/mol.110.063933.PubMedCentralCrossRefPubMed
45.
go back to reference Griffin BW, Klimko P, Crider JY, Sharif NA: AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther. 1999, 290 (3): 1278-1284.PubMed Griffin BW, Klimko P, Crider JY, Sharif NA: AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther. 1999, 290 (3): 1278-1284.PubMed
46.
go back to reference Machwate M, Harada S, Leu CT, Seedor G, Labelle M, Gallant M, Hutchins S, Lachance N, Sawyer N, Slipetz D, et al: Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2). Mol Pharmacol. 2001, 60 (1): 36-41.PubMed Machwate M, Harada S, Leu CT, Seedor G, Labelle M, Gallant M, Hutchins S, Lachance N, Sawyer N, Slipetz D, et al: Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2). Mol Pharmacol. 2001, 60 (1): 36-41.PubMed
47.
go back to reference Santiskulvong C, Rozengurt E: Protein kinase Calpha mediates feedback inhibition of EGF receptor transactivation induced by Gq-coupled receptor agonists. Cell Signal. 2007, 19 (6): 1348-1357. 10.1016/j.cellsig.2007.01.006.CrossRefPubMed Santiskulvong C, Rozengurt E: Protein kinase Calpha mediates feedback inhibition of EGF receptor transactivation induced by Gq-coupled receptor agonists. Cell Signal. 2007, 19 (6): 1348-1357. 10.1016/j.cellsig.2007.01.006.CrossRefPubMed
48.
go back to reference Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990, 87 (7): 2466-2470. 10.1073/pnas.87.7.2466.PubMedCentralCrossRefPubMed Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990, 87 (7): 2466-2470. 10.1073/pnas.87.7.2466.PubMedCentralCrossRefPubMed
49.
go back to reference Ohtsu H, Dempsey PJ, Eguchi S: ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2006, 291 (1): C1-C10. 10.1152/ajpcell.00620.2005.CrossRefPubMed Ohtsu H, Dempsey PJ, Eguchi S: ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2006, 291 (1): C1-C10. 10.1152/ajpcell.00620.2005.CrossRefPubMed
50.
go back to reference Santiskulvong C, Rozengurt E: Galardin (GM 6001), a broad-spectrum matrix metalloproteinase inhibitor, blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells. Exp Cell Res. 2003, 290 (2): 437-446. 10.1016/S0014-4827(03)00355-0.CrossRefPubMed Santiskulvong C, Rozengurt E: Galardin (GM 6001), a broad-spectrum matrix metalloproteinase inhibitor, blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells. Exp Cell Res. 2003, 290 (2): 437-446. 10.1016/S0014-4827(03)00355-0.CrossRefPubMed
51.
go back to reference Odegard J, Aasrum M, Tveteraas IH, Bharath SP, Sandnes D, Christoffersen T: Role of ErbB2 in the prostaglandin E(2)-induced enhancement of the mitogenic response to epidermal growth factor in cultured hepatocytes. Biochem Biophys Res Commun. 2012, 421 (2): 255-260. 10.1016/j.bbrc.2012.03.148.CrossRefPubMed Odegard J, Aasrum M, Tveteraas IH, Bharath SP, Sandnes D, Christoffersen T: Role of ErbB2 in the prostaglandin E(2)-induced enhancement of the mitogenic response to epidermal growth factor in cultured hepatocytes. Biochem Biophys Res Commun. 2012, 421 (2): 255-260. 10.1016/j.bbrc.2012.03.148.CrossRefPubMed
52.
go back to reference Meisdalen K, Dajani OF, Christoffersen T, Sandnes D: Prostaglandins enhance epidermal growth factor-induced DNA synthesis in hepatocytes by stimulation of E prostanoid 3 and F prostanoid receptors. J Pharmacol Exp Ther. 2007, 322 (3): 1044-1050. 10.1124/jpet.107.121277.CrossRefPubMed Meisdalen K, Dajani OF, Christoffersen T, Sandnes D: Prostaglandins enhance epidermal growth factor-induced DNA synthesis in hepatocytes by stimulation of E prostanoid 3 and F prostanoid receptors. J Pharmacol Exp Ther. 2007, 322 (3): 1044-1050. 10.1124/jpet.107.121277.CrossRefPubMed
53.
go back to reference Bronstad GO, Gladhaug IP, Haffner F, Rugstad HE, Christoffersen T: The regulation of cyclic AMP levels in cultured MH1C1 rat hepatoma cells and in solid tumours derived from MH1C1 cell inoculates. Anticancer Res. 1987, 7 (2): 155-160.PubMed Bronstad GO, Gladhaug IP, Haffner F, Rugstad HE, Christoffersen T: The regulation of cyclic AMP levels in cultured MH1C1 rat hepatoma cells and in solid tumours derived from MH1C1 cell inoculates. Anticancer Res. 1987, 7 (2): 155-160.PubMed
54.
go back to reference Hashimoto N, Watanabe T, Ikeda Y, Yamada H, Taniguchi S, Mitsui H, Kurokawa K: Prostaglandins induce proliferation of rat hepatocytes through a prostaglandin E2 receptor EP3 subtype. Am J Physiol. 1997, 272 (3 Pt 1): G597-G604.PubMed Hashimoto N, Watanabe T, Ikeda Y, Yamada H, Taniguchi S, Mitsui H, Kurokawa K: Prostaglandins induce proliferation of rat hepatocytes through a prostaglandin E2 receptor EP3 subtype. Am J Physiol. 1997, 272 (3 Pt 1): G597-G604.PubMed
55.
go back to reference Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T, Sugimoto Y, Negishi M, Narumiya S, Sugimura T, et al: Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut. 2004, 53 (8): 1151-1158. 10.1136/gut.2003.028787.PubMedCentralCrossRefPubMed Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T, Sugimoto Y, Negishi M, Narumiya S, Sugimura T, et al: Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut. 2004, 53 (8): 1151-1158. 10.1136/gut.2003.028787.PubMedCentralCrossRefPubMed
56.
go back to reference Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J: Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem. 2001, 276 (23): 20130-20135. 10.1074/jbc.M102307200.CrossRefPubMed Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J: Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem. 2001, 276 (23): 20130-20135. 10.1074/jbc.M102307200.CrossRefPubMed
57.
go back to reference Han C, Michalopoulos GK, Wu T: Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol. 2006, 207 (1): 261-270. 10.1002/jcp.20560.CrossRefPubMed Han C, Michalopoulos GK, Wu T: Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol. 2006, 207 (1): 261-270. 10.1002/jcp.20560.CrossRefPubMed
58.
go back to reference Itabashi H, Maesawa C, Oikawa H, Kotani K, Sakurai E, Kato K, Komatsu H, Nitta H, Kawamura H, Wakabayashi G, et al: Angiotensin II and epidermal growth factor receptor cross-talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines. Hepatol Res. 2008, 38 (6): 601-613. 10.1111/j.1872-034X.2007.00304.x.CrossRefPubMed Itabashi H, Maesawa C, Oikawa H, Kotani K, Sakurai E, Kato K, Komatsu H, Nitta H, Kawamura H, Wakabayashi G, et al: Angiotensin II and epidermal growth factor receptor cross-talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines. Hepatol Res. 2008, 38 (6): 601-613. 10.1111/j.1872-034X.2007.00304.x.CrossRefPubMed
59.
go back to reference Caja L, Ortiz C, Bertran E, Murillo MM, Miro-Obradors MJ, Palacios E, Fabregat I: Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal. 2007, 19 (4): 683-694. 10.1016/j.cellsig.2006.09.002.CrossRefPubMed Caja L, Ortiz C, Bertran E, Murillo MM, Miro-Obradors MJ, Palacios E, Fabregat I: Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal. 2007, 19 (4): 683-694. 10.1016/j.cellsig.2006.09.002.CrossRefPubMed
60.
go back to reference Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS: Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med. 2002, 8 (3): 289-293. 10.1038/nm0302-289.CrossRefPubMed Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS: Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med. 2002, 8 (3): 289-293. 10.1038/nm0302-289.CrossRefPubMed
61.
go back to reference Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A: Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997, 16 (23): 7032-7044. 10.1093/emboj/16.23.7032.PubMedCentralCrossRefPubMed Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A: Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997, 16 (23): 7032-7044. 10.1093/emboj/16.23.7032.PubMedCentralCrossRefPubMed
62.
go back to reference Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003, 31 (Pt 6): 1203-1208.CrossRefPubMed Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003, 31 (Pt 6): 1203-1208.CrossRefPubMed
63.
go back to reference Kisfalvi K, Guha S, Rozengurt E: Neurotensin and EGF induce synergistic stimulation of DNA synthesis by increasing the duration of ERK signaling in ductal pancreatic cancer cells. J Cell Physiol. 2005, 202 (3): 880-890. 10.1002/jcp.20187.CrossRefPubMed Kisfalvi K, Guha S, Rozengurt E: Neurotensin and EGF induce synergistic stimulation of DNA synthesis by increasing the duration of ERK signaling in ductal pancreatic cancer cells. J Cell Physiol. 2005, 202 (3): 880-890. 10.1002/jcp.20187.CrossRefPubMed
Metadata
Title
Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells
Authors
Ingun Heiene Tveteraas
Kristin Meisdalen Müller
Monica Aasrum
John Ødegård
Olav Dajani
Tormod Guren
Dagny Sandnes
Thoralf Christoffersen
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-72

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine