Skip to main content
Top
Published in: BMC Medicine 1/2016

Open Access 01-12-2016 | Research article

Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study

Authors: Léa Maitre, Cristina M. Villanueva, Matthew R. Lewis, Jesús Ibarluzea, Loreto Santa-Marina, Martine Vrijheid, Jordi Sunyer, Muireann Coen, Mireille B. Toledano

Published in: BMC Medicine | Issue 1/2016

Login to get access

Abstract

Background

Maternal metabolism during pregnancy is a major determinant of the intra-uterine environment and fetal outcomes. Herein, we characterize the maternal urinary metabolome throughout pregnancy to identify maternal metabolic signatures of fetal growth in two subcohorts and explain potential sources of variation in metabolic profiles based on lifestyle and clinical data.

Methods

We used 1H nuclear magnetic resonance (NMR) spectroscopy to characterize maternal urine samples collected in the INMA birth cohort at the first (n = 412 and n = 394, respectively, in Gipuzkoa and Sabadell cohorts) and third trimesters of gestation (n = 417 and 469). Metabolic phenotypes that reflected longitudinal intra- and inter-individual variation were used to predict measures of fetal growth and birth weight.

Results

A metabolic shift between the first and third trimesters of gestation was characterized by 1H NMR signals arising predominantly from steroid by-products. We identified 10 significant and reproducible metabolic associations in the third trimester with estimated fetal, birth, and placental weight in two independent subcohorts. These included branched-chain amino acids; isoleucine, valine, leucine, alanine and 3 hydroxyisobutyrate (metabolite of valine), which were associated with a significant fetal weight increase at week 34 of up to 2.4% in Gipuzkoa (P < 0.005) and 1% in Sabadell (P < 0.05). Other metabolites included pregnancy-related hormone by-products of estrogens and progesterone, and the methyl donor choline. We could explain a total of 48–53% of the total variance in birth weight of which urine metabolites had an independent predictive power of 12% adjusting for all other lifestyle/clinical factors. First trimester metabolic phenotypes could not predict reproducibly weight at later stages of development. Physical activity, as well as other modifiable lifestyle/clinical factors, such as coffee consumption, vitamin D intake, and smoking, were identified as potential sources of metabolic variation during pregnancy.

Conclusions

Significant reproducible maternal urinary metabolic signatures of fetal growth and birth weight are identified for the first time and linked to modifiable lifestyle factors. This novel approach to prenatal screening, combining multiple risk factors, present a great opportunity to personalize pregnancy management and reduce newborn disease risk in later life.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koyanagi A, Zhang J, Dagvadorj A, Hirayama F, Shibuya K, Souza JP, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381:476–83.CrossRefPubMed Koyanagi A, Zhang J, Dagvadorj A, Hirayama F, Shibuya K, Souza JP, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381:476–83.CrossRefPubMed
2.
go back to reference Lee ACC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Heal. 2013;1:e26–36.CrossRef Lee ACC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Heal. 2013;1:e26–36.CrossRef
3.
go back to reference Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.CrossRefPubMed Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.CrossRefPubMed
4.
go back to reference Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.CrossRefPubMedPubMedCentral Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.CrossRefPubMedPubMedCentral
6.
go back to reference Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis. BJOG. 2011;118:1042–54.CrossRefPubMed Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis. BJOG. 2011;118:1042–54.CrossRefPubMed
7.
go back to reference Kenny LC, Broadhurst DI, Dunn W, Brown M, North RA, McCowan L, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56:741–9.CrossRefPubMed Kenny LC, Broadhurst DI, Dunn W, Brown M, North RA, McCowan L, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56:741–9.CrossRefPubMed
8.
go back to reference Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011;10:3660–73.CrossRefPubMed Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011;10:3660–73.CrossRefPubMed
9.
go back to reference Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Galhano E, Pita C, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. J Proteome Res. 2013;12:2946–57.CrossRefPubMed Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Galhano E, Pita C, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. J Proteome Res. 2013;12:2946–57.CrossRefPubMed
10.
go back to reference Maitre L, Fthenou E, Athersuch T, Coen M, Toledano MB, Holmes E, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014;12:110.CrossRefPubMedPubMedCentral Maitre L, Fthenou E, Athersuch T, Coen M, Toledano MB, Holmes E, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014;12:110.CrossRefPubMedPubMedCentral
11.
go back to reference Pinto J, Barros S, Rosa M, Domingues M, Goodfellow BJ, Carreira IM, et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J Proteome Res. 2015;14(2):1263–74.CrossRefPubMed Pinto J, Barros S, Rosa M, Domingues M, Goodfellow BJ, Carreira IM, et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J Proteome Res. 2015;14(2):1263–74.CrossRefPubMed
12.
go back to reference Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: The INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol. 2012;41(4):930–40.CrossRefPubMed Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: The INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol. 2012;41(4):930–40.CrossRefPubMed
13.
go back to reference Iñiguez C, Ballester F, Costa O, Murcia M, Souto A, Santa-Marina L, et al. Maternal smoking during pregnancy and fetal biometry: the INMA Mother and Child Cohort Study. Am J Epidemiol. 2013;178:1067–75.CrossRefPubMed Iñiguez C, Ballester F, Costa O, Murcia M, Souto A, Santa-Marina L, et al. Maternal smoking during pregnancy and fetal biometry: the INMA Mother and Child Cohort Study. Am J Epidemiol. 2013;178:1067–75.CrossRefPubMed
14.
go back to reference Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.CrossRefPubMed Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.CrossRefPubMed
15.
go back to reference Interpretation of results for log transformed variables. In: Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (eds.). Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York: Springer Science and Business Media; 2005. Interpretation of results for log transformed variables. In: Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (eds.). Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York: Springer Science and Business Media; 2005.
16.
go back to reference Zuber V, Strimmer K. High-dimensional regression and variable selection using CAR scores. Stat Appl Genet Mol Biol. 2011;10:1–27. Zuber V, Strimmer K. High-dimensional regression and variable selection using CAR scores. Stat Appl Genet Mol Biol. 2011;10:1–27.
17.
go back to reference Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–21.CrossRefPubMedPubMedCentral Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–21.CrossRefPubMedPubMedCentral
18.
go back to reference Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Carreira IM, Galhano E, et al. Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J Proteome. 2013;12:969–79. Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Carreira IM, Galhano E, et al. Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J Proteome. 2013;12:969–79.
19.
go back to reference Sachse D, Sletner L, Morkrid K, Jenum AK, Birkeland KI, Rise F, et al. Metabolic changes in urine during and after pregnancy in a large, multiethnic population-based cohort study of gestational diabetes. PLoS One. 2012;7:e52399.CrossRefPubMedPubMedCentral Sachse D, Sletner L, Morkrid K, Jenum AK, Birkeland KI, Rise F, et al. Metabolic changes in urine during and after pregnancy in a large, multiethnic population-based cohort study of gestational diabetes. PLoS One. 2012;7:e52399.CrossRefPubMedPubMedCentral
20.
go back to reference Pinto J, Barros AS, Domingues MRM, Goodfellow BJ, Galhano E, Pita C, et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J Proteome Res. 2014;14:1263–74.CrossRef Pinto J, Barros AS, Domingues MRM, Goodfellow BJ, Galhano E, Pita C, et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J Proteome Res. 2014;14:1263–74.CrossRef
21.
go back to reference Hill M, Parizek A, Kancheva R, Jirasek JE. Reduced progesterone metabolites in human late pregnancy. Physiol Res. 2011;60:225–41.PubMed Hill M, Parizek A, Kancheva R, Jirasek JE. Reduced progesterone metabolites in human late pregnancy. Physiol Res. 2011;60:225–41.PubMed
22.
go back to reference Meng L-J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjövall J. Profiles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol. 1997;27:346–57.CrossRefPubMed Meng L-J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjövall J. Profiles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol. 1997;27:346–57.CrossRefPubMed
23.
go back to reference Blackburn SB. Chapter 11. Renal system and fluid and electrolyte homeostasis. In: Maternal, Fetal, and Neonatal Physiology. Maryland Heights: Elsevier Saunders; 2007. pp. 375–414. Blackburn SB. Chapter 11. Renal system and fluid and electrolyte homeostasis. In: Maternal, Fetal, and Neonatal Physiology. Maryland Heights: Elsevier Saunders; 2007. pp. 375–414.
24.
go back to reference Fitch WL, King JC. Plasma amino acid, glucose, and insulin responses to moderate-protein and high-protein test meals in pregnant, nonpregnant, and gestational diabetic women. Am J Clin Nutr. 1987;46:243–9.PubMed Fitch WL, King JC. Plasma amino acid, glucose, and insulin responses to moderate-protein and high-protein test meals in pregnant, nonpregnant, and gestational diabetic women. Am J Clin Nutr. 1987;46:243–9.PubMed
25.
go back to reference Cho SW, Cha YS. Pregnancy increases urinary loss of carnitine and reduces plasma carnitine in Korean women. Br J Nutr. 2005;93:685–91.CrossRefPubMed Cho SW, Cha YS. Pregnancy increases urinary loss of carnitine and reduces plasma carnitine in Korean women. Br J Nutr. 2005;93:685–91.CrossRefPubMed
27.
go back to reference Scholtens DM, Muehlbauer MJ, Daya NR, Stevens RD, Dyer AR, Lowe LP, et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care. 2014;37:158–66.CrossRefPubMed Scholtens DM, Muehlbauer MJ, Daya NR, Stevens RD, Dyer AR, Lowe LP, et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care. 2014;37:158–66.CrossRefPubMed
28.
go back to reference Cetin I, de Santis MSN, Taricco E, Radaelli T, Teng C, Ronzoni S, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.CrossRefPubMed Cetin I, de Santis MSN, Taricco E, Radaelli T, Teng C, Ronzoni S, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.CrossRefPubMed
29.
go back to reference Tea I, Le Gall G, Kuster A, Guignard N, Alexandre-Gouabau MC, Darmaun D, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012;7:e29947.CrossRefPubMedPubMedCentral Tea I, Le Gall G, Kuster A, Guignard N, Alexandre-Gouabau MC, Darmaun D, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012;7:e29947.CrossRefPubMedPubMedCentral
30.
go back to reference Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, et al. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7:285ra62.CrossRefPubMed Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, et al. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7:285ra62.CrossRefPubMed
31.
go back to reference Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.CrossRefPubMedPubMedCentral Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.CrossRefPubMedPubMedCentral
32.
go back to reference Rebagliato M, Murcia M, Alvarez-Pedrerol M, Espada M, Fernández-Somoano A, Lertxundi N, et al. Iodine supplementation during pregnancy and infant neuropsychological development. INMA Mother and Child Cohort Study. Am J Epidemiol. 2013;177:944–53.CrossRefPubMed Rebagliato M, Murcia M, Alvarez-Pedrerol M, Espada M, Fernández-Somoano A, Lertxundi N, et al. Iodine supplementation during pregnancy and infant neuropsychological development. INMA Mother and Child Cohort Study. Am J Epidemiol. 2013;177:944–53.CrossRefPubMed
33.
go back to reference Dadvand P, Sunyer J, Basagaña X, Ballester F, Lertxundi A, Fernández-Somoano A, et al. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ Health Perspect. 2012;120:1481–7.CrossRefPubMedPubMedCentral Dadvand P, Sunyer J, Basagaña X, Ballester F, Lertxundi A, Fernández-Somoano A, et al. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ Health Perspect. 2012;120:1481–7.CrossRefPubMedPubMedCentral
34.
go back to reference Villanueva CM, Gracia-Lavedan E, Ibarluzea J, Santa Marina L, Ballester F, Llop S, et al. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age and preterm delivery in Spain. Environ Health Perspect. 2011;119(12):1824–30.CrossRefPubMedPubMedCentral Villanueva CM, Gracia-Lavedan E, Ibarluzea J, Santa Marina L, Ballester F, Llop S, et al. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age and preterm delivery in Spain. Environ Health Perspect. 2011;119(12):1824–30.CrossRefPubMedPubMedCentral
35.
go back to reference Salas SP, Marshall G, Gutierrez BL, Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47:203–8.CrossRefPubMed Salas SP, Marshall G, Gutierrez BL, Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47:203–8.CrossRefPubMed
36.
go back to reference Hill M, Pařízek A, Cibula D, Kancheva R, Jirásek JE, Jirkovská M, et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J Steroid Biochem Mol Biol. 2010;122:114–32.CrossRefPubMed Hill M, Pařízek A, Cibula D, Kancheva R, Jirásek JE, Jirkovská M, et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J Steroid Biochem Mol Biol. 2010;122:114–32.CrossRefPubMed
37.
go back to reference Pasqualini JR. Chapter 4 Metabolic conjugation and hydrolysis of steroid hormones in the fetoplacental unit. In: Fishman W (ed.). Metabolic Conjugation and Metabolic Hydrolysis. Vol. 2. Elsevier Inc.; 1970; 173–4. Pasqualini JR. Chapter 4 Metabolic conjugation and hydrolysis of steroid hormones in the fetoplacental unit. In: Fishman W (ed.). Metabolic Conjugation and Metabolic Hydrolysis. Vol. 2. Elsevier Inc.; 1970; 173–4.
38.
go back to reference Horgan RP, Broadhurst DI, Dunn WB, Brown M, Heazell AE, Kell DB, et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta. 2010;31:893–901.CrossRefPubMed Horgan RP, Broadhurst DI, Dunn WB, Brown M, Heazell AE, Kell DB, et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta. 2010;31:893–901.CrossRefPubMed
39.
go back to reference Heazell AE, Bernatavicius G, Warrander L, Brown MC, Dunn WB. A metabolomic approach identifies differences in maternal serum in third trimester pregnancies that end in poor perinatal outcome. Reprod Sci. 2012;19:863–75.CrossRefPubMed Heazell AE, Bernatavicius G, Warrander L, Brown MC, Dunn WB. A metabolomic approach identifies differences in maternal serum in third trimester pregnancies that end in poor perinatal outcome. Reprod Sci. 2012;19:863–75.CrossRefPubMed
40.
go back to reference Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150.CrossRefPubMedPubMedCentral Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150.CrossRefPubMedPubMedCentral
41.
go back to reference Habayeb O, Daemen A, Timmerman D, De Moor B, Hackett GA, Bourne T, et al. The relationship between first trimester fetal growth, pregnancy-associated plasma protein A levels and birthweight. Prenat Diagn. 2010;30:873–8.CrossRefPubMed Habayeb O, Daemen A, Timmerman D, De Moor B, Hackett GA, Bourne T, et al. The relationship between first trimester fetal growth, pregnancy-associated plasma protein A levels and birthweight. Prenat Diagn. 2010;30:873–8.CrossRefPubMed
42.
go back to reference Jaddoe VWV, de Jonge LL, Hofman A, Franco OH, Steegers EAP, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14.CrossRefPubMedPubMedCentral Jaddoe VWV, de Jonge LL, Hofman A, Franco OH, Steegers EAP, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14.CrossRefPubMedPubMedCentral
43.
go back to reference Alfirevic Z, Stampalija T, Gyte GML. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2013;11:CD007529. Alfirevic Z, Stampalija T, Gyte GML. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2013;11:CD007529.
44.
go back to reference Keller U, van der Wal C, Seliger G, Scheler C, Röpke F, Eder K. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur J Clin Nutr. 2009;63:1098–105.CrossRefPubMed Keller U, van der Wal C, Seliger G, Scheler C, Röpke F, Eder K. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur J Clin Nutr. 2009;63:1098–105.CrossRefPubMed
45.
go back to reference Spencer RN, Carr DJ, David AL. Treatment of poor placentation and the prevention of associated adverse outcomes--what does the future hold? Prenat Diagn. 2014;34:677–84.PubMedPubMedCentral Spencer RN, Carr DJ, David AL. Treatment of poor placentation and the prevention of associated adverse outcomes--what does the future hold? Prenat Diagn. 2014;34:677–84.PubMedPubMedCentral
46.
go back to reference Brown LD, Green AS, Limesand SW, Rozance PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed). 2011;3:428–44. Brown LD, Green AS, Limesand SW, Rozance PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed). 2011;3:428–44.
47.
go back to reference Austic RE, Su CL, Strupp BJ, Levitsky DA. Effects of dietary mixtures of amino acids on fetal growth and maternal and fetal amino acid pools in experimental maternal phenylketonuria. Am J Clin Nutr. 1999;69(4):687–96.PubMed Austic RE, Su CL, Strupp BJ, Levitsky DA. Effects of dietary mixtures of amino acids on fetal growth and maternal and fetal amino acid pools in experimental maternal phenylketonuria. Am J Clin Nutr. 1999;69(4):687–96.PubMed
Metadata
Title
Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study
Authors
Léa Maitre
Cristina M. Villanueva
Matthew R. Lewis
Jesús Ibarluzea
Loreto Santa-Marina
Martine Vrijheid
Jordi Sunyer
Muireann Coen
Mireille B. Toledano
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2016
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-016-0706-3

Other articles of this Issue 1/2016

BMC Medicine 1/2016 Go to the issue