Skip to main content
Top
Published in: Virology Journal 1/2008

Open Access 01-12-2008 | Research

Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

Authors: Dina Rakotobe, Sébastien Violot, Saw See Hong, Patrice Gouet, Pierre Boulanger

Published in: Virology Journal | Issue 1/2008

Login to get access

Abstract

Background

The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA), integrase (IN) and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D) protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies.

Results

Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller.

Conclusion

Identification of antibody-, MA-, IN- and EZH2-binding sites at the surface of the EED isoform 3 provided a global picture of the immunogenic and protein-protein interacting regions in the EED C-terminal domain, organized as a seven-bladed β-propeller protein. Mapping of the HIV-1 MA and IN binding sites on the 3D-model of EED core predicted that EED-bound MA and IN ligands would be in close vicinity at the surface of the β-propeller, and that the occurrence of a ternary complex MA-EED-IN would be possible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ng J, Li R, Morgan K, Simon J: Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein. Mol Cell Biol 1997, 17: 6663-6672.PubMedCentralCrossRefPubMed Ng J, Li R, Morgan K, Simon J: Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein. Mol Cell Biol 1997, 17: 6663-6672.PubMedCentralCrossRefPubMed
2.
go back to reference Schumacher A, Faust C, Magnuson T: Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 1996, 383: 250-253. 10.1038/383250a0CrossRef Schumacher A, Faust C, Magnuson T: Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 1996, 383: 250-253. 10.1038/383250a0CrossRef
3.
go back to reference Schumacher A, Lichtarge O, Schwartz S, Magnusson T: The murine polycombgroup eed and its human orthologue: functional implications of evolutionary conservation. Genomics 1998, 54: 79-88. 10.1006/geno.1998.5509CrossRefPubMed Schumacher A, Lichtarge O, Schwartz S, Magnusson T: The murine polycombgroup eed and its human orthologue: functional implications of evolutionary conservation. Genomics 1998, 54: 79-88. 10.1006/geno.1998.5509CrossRefPubMed
4.
go back to reference Simon J: Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr Opin Cell Biol 1995, 7: 376-385. 10.1016/0955-0674(95)80093-XCrossRefPubMed Simon J: Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr Opin Cell Biol 1995, 7: 376-385. 10.1016/0955-0674(95)80093-XCrossRefPubMed
5.
go back to reference Sewalt RGAB, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DPE, Hendrix T, van Driel R, Otte AP: Characterization of interactions between the mammalian Polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian Polycomb-group protein complexes. Mol Cell Biol 1998, 18: 3586-3595.PubMedCentralCrossRefPubMed Sewalt RGAB, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DPE, Hendrix T, van Driel R, Otte AP: Characterization of interactions between the mammalian Polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian Polycomb-group protein complexes. Mol Cell Biol 1998, 18: 3586-3595.PubMedCentralCrossRefPubMed
6.
go back to reference Neer EJ, Schmidt CJ, Nambudripad R, Smith TF: The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371: 297-300. 10.1038/371297a0CrossRefPubMed Neer EJ, Schmidt CJ, Nambudripad R, Smith TF: The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371: 297-300. 10.1038/371297a0CrossRefPubMed
7.
go back to reference Denisenko O, Bomsztyk C: The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity. Mol Cell Biol 1997, 17: 4707-4717.PubMedCentralCrossRefPubMed Denisenko O, Bomsztyk C: The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity. Mol Cell Biol 1997, 17: 4707-4717.PubMedCentralCrossRefPubMed
8.
go back to reference Rietzler M, Bittner M, Kolanus W, Schuster A, Holzmann B: The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of b7-integrins. J Biol Chem 1998, 273: 27459-27466. 10.1074/jbc.273.42.27459CrossRefPubMed Rietzler M, Bittner M, Kolanus W, Schuster A, Holzmann B: The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of b7-integrins. J Biol Chem 1998, 273: 27459-27466. 10.1074/jbc.273.42.27459CrossRefPubMed
9.
go back to reference Crowe DT, Chiu H, Fong S, Weissmann IL: Regulation of the avidity of integrin alpha4 beta7 by the beta7 cytoplasmic domain. J Biol Chem 1994, 269: 14411-14418.PubMed Crowe DT, Chiu H, Fong S, Weissmann IL: Regulation of the avidity of integrin alpha4 beta7 by the beta7 cytoplasmic domain. J Biol Chem 1994, 269: 14411-14418.PubMed
10.
go back to reference Manié SN, Astier A, Wang D, Phifer JS, Chen J, Lazarovits AI, Morimoto C, Freedman AS: Stimulation of tyrosine phosphorylation after ligation of beta7 and beta1 integrins on human B cells. Blood 1996, 87: 1855-1861.PubMed Manié SN, Astier A, Wang D, Phifer JS, Chen J, Lazarovits AI, Morimoto C, Freedman AS: Stimulation of tyrosine phosphorylation after ligation of beta7 and beta1 integrins on human B cells. Blood 1996, 87: 1855-1861.PubMed
11.
go back to reference Otte AP, Kwaks THJ: Gene repression by Polycomb group protein complexes: a distinct complex for every occasion ? Curr Opin Genet Dev 2003, 13: 448-454. 10.1016/S0959-437X(03)00108-4CrossRefPubMed Otte AP, Kwaks THJ: Gene repression by Polycomb group protein complexes: a distinct complex for every occasion ? Curr Opin Genet Dev 2003, 13: 448-454. 10.1016/S0959-437X(03)00108-4CrossRefPubMed
12.
go back to reference Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys27. Genes & Dev 2004, 18: 1592-1605. 10.1101/gad.1200204CrossRef Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys27. Genes & Dev 2004, 18: 1592-1605. 10.1101/gad.1200204CrossRef
13.
go back to reference Kuzmichev A, Jenuwein T, Tempst P, Reinberg D: Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004, 14: 183-193. 10.1016/S1097-2765(04)00185-6CrossRefPubMed Kuzmichev A, Jenuwein T, Tempst P, Reinberg D: Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004, 14: 183-193. 10.1016/S1097-2765(04)00185-6CrossRefPubMed
14.
go back to reference Cao R, Zhang Y: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molec Cell 2004, 15: 57-67. 10.1016/j.molcel.2004.06.020CrossRefPubMed Cao R, Zhang Y: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molec Cell 2004, 15: 57-67. 10.1016/j.molcel.2004.06.020CrossRefPubMed
15.
go back to reference Peytavi R, Hong SS, Gay B, Dupuy d'Angeac A, Selig L, Bénichou S, Benarous R, Boulanger P: H-EED, the product of the human homolog of the murine eed gene, binds to the matrix protein of HIV-1. J Biol Chem 1999, 274: 1635-1645. 10.1074/jbc.274.3.1635CrossRefPubMed Peytavi R, Hong SS, Gay B, Dupuy d'Angeac A, Selig L, Bénichou S, Benarous R, Boulanger P: H-EED, the product of the human homolog of the murine eed gene, binds to the matrix protein of HIV-1. J Biol Chem 1999, 274: 1635-1645. 10.1074/jbc.274.3.1635CrossRefPubMed
16.
go back to reference Violot S, Hong SS, Rakotobe D, Petit C, Gay B, Moreau K, Billaud G, Priet S, Sire J, Schwartz O, et al.: The human Polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1. J Virol 2003, 77: 12507-12522. 10.1128/JVI.77.23.12507-12522.2003PubMedCentralCrossRefPubMed Violot S, Hong SS, Rakotobe D, Petit C, Gay B, Moreau K, Billaud G, Priet S, Sire J, Schwartz O, et al.: The human Polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1. J Virol 2003, 77: 12507-12522. 10.1128/JVI.77.23.12507-12522.2003PubMedCentralCrossRefPubMed
17.
go back to reference Witte V, Laffert B, Rosorius O, Lischka P, Blume K, Galler G, Stilper A, Willbold D, D'Aloja P, Sixt M, et al.: HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane. Mol Cell 2004, 13: 179-190. 10.1016/S1097-2765(04)00004-8CrossRefPubMed Witte V, Laffert B, Rosorius O, Lischka P, Blume K, Galler G, Stilper A, Willbold D, D'Aloja P, Sixt M, et al.: HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane. Mol Cell 2004, 13: 179-190. 10.1016/S1097-2765(04)00004-8CrossRefPubMed
18.
go back to reference Pirrotta V: Polycombing the genome: Pcg, trxG, and chromatin silencing. Cell 1998, 93: 333-336. 10.1016/S0092-8674(00)81162-9CrossRefPubMed Pirrotta V: Polycombing the genome: Pcg, trxG, and chromatin silencing. Cell 1998, 93: 333-336. 10.1016/S0092-8674(00)81162-9CrossRefPubMed
19.
go back to reference Brock HW, van Lohuizen M: The Polycomb group – no longer an exclusive club ? Curr Opin Genet Dev 2001, 11: 175-181. 10.1016/S0959-437X(00)00176-3CrossRefPubMed Brock HW, van Lohuizen M: The Polycomb group – no longer an exclusive club ? Curr Opin Genet Dev 2001, 11: 175-181. 10.1016/S0959-437X(00)00176-3CrossRefPubMed
20.
go back to reference Orlando V: Polycomb, epigenomes, and control of cell identity. Cell 2003,112(5):599-606. 10.1016/S0092-8674(03)00157-0CrossRefPubMed Orlando V: Polycomb, epigenomes, and control of cell identity. Cell 2003,112(5):599-606. 10.1016/S0092-8674(03)00157-0CrossRefPubMed
21.
go back to reference Mager J, Montgomery ND, de Villena FP, Magnusson T: Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003, 33: 433-434. 10.1038/ng1125CrossRef Mager J, Montgomery ND, de Villena FP, Magnusson T: Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003, 33: 433-434. 10.1038/ng1125CrossRef
22.
go back to reference Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F: HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002, 110: 521-529. 10.1016/S0092-8674(02)00864-4CrossRefPubMed Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F: HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002, 110: 521-529. 10.1016/S0092-8674(02)00864-4CrossRefPubMed
23.
go back to reference Wu X, Li Y, Crise B, Burgess SM: Transcription start regions in the human genome are favored targets for MLV integration. Science 2003, 300: 1749-1751. 10.1126/science.1083413CrossRefPubMed Wu X, Li Y, Crise B, Burgess SM: Transcription start regions in the human genome are favored targets for MLV integration. Science 2003, 300: 1749-1751. 10.1126/science.1083413CrossRefPubMed
24.
25.
go back to reference Van Maele B, Debyser Z: HIV-1 integration: an interplay between HIV-1 integrase, cellular and viral proteins. AIDS Reviews 2005, 7: 26-43.PubMed Van Maele B, Debyser Z: HIV-1 integration: an interplay between HIV-1 integrase, cellular and viral proteins. AIDS Reviews 2005, 7: 26-43.PubMed
26.
go back to reference Rakotobe D, Tardy J-C, Andre P, Hong SS, Darlix J-L, Boulanger P: Human Polycomb group EED protein negatively affects HIV-1 assembly and release. Retrovirology 2007, 4: 37. 10.1186/1742-4690-4-37PubMedCentralCrossRefPubMed Rakotobe D, Tardy J-C, Andre P, Hong SS, Darlix J-L, Boulanger P: Human Polycomb group EED protein negatively affects HIV-1 assembly and release. Retrovirology 2007, 4: 37. 10.1186/1742-4690-4-37PubMedCentralCrossRefPubMed
27.
go back to reference Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB: The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 1996, 379: 311-319. 10.1038/379311a0CrossRefPubMed Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB: The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 1996, 379: 311-319. 10.1038/379311a0CrossRefPubMed
28.
go back to reference Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB: Crystal structure of a Gprotein beta gamma dimer at 2.1Å resolution. Nature 1996, 379: 369-374. 10.1038/379369a0CrossRefPubMed Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB: Crystal structure of a Gprotein beta gamma dimer at 2.1Å resolution. Nature 1996, 379: 369-374. 10.1038/379369a0CrossRefPubMed
29.
go back to reference Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28: 235-242. 10.1093/nar/28.1.235PubMedCentralCrossRefPubMed Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28: 235-242. 10.1093/nar/28.1.235PubMedCentralCrossRefPubMed
30.
go back to reference Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J: Structural basis of EZH2 recognition by EED. Structure 2007, 15: 1306-1315. 10.1016/j.str.2007.08.007CrossRefPubMed Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J: Structural basis of EZH2 recognition by EED. Structure 2007, 15: 1306-1315. 10.1016/j.str.2007.08.007CrossRefPubMed
31.
go back to reference Chen L, Mathews FS, Davidson VL, Huizinga EG, Vellieux FM, Hol WG: Threedimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 A resolution. Proteins 1992, 14: 288-299. 10.1002/prot.340140214CrossRefPubMed Chen L, Mathews FS, Davidson VL, Huizinga EG, Vellieux FM, Hol WG: Threedimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 A resolution. Proteins 1992, 14: 288-299. 10.1002/prot.340140214CrossRefPubMed
32.
go back to reference Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR: The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 1995, 83: 1047-1058. 10.1016/0092-8674(95)90220-1CrossRefPubMed Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR: The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 1995, 83: 1047-1058. 10.1016/0092-8674(95)90220-1CrossRefPubMed
33.
go back to reference Hong SS, Boulanger P: Protein ligands of human Adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of WT and mutant penton capsomers. EMBO J 1995, 14: 4714-4727.PubMedCentralPubMed Hong SS, Boulanger P: Protein ligands of human Adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of WT and mutant penton capsomers. EMBO J 1995, 14: 4714-4727.PubMedCentralPubMed
34.
go back to reference Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA: Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997, 16: 2294-2306. 10.1093/emboj/16.9.2294PubMedCentralCrossRefPubMed Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA: Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997, 16: 2294-2306. 10.1093/emboj/16.9.2294PubMedCentralCrossRefPubMed
35.
go back to reference Fournier C, Cortay J-C, Carbonnelle C, Ehresmann C, Marquet R, Boulanger P: The HIV-1 Nef protein enhances the affinity of reverse transcriptase for RNA in vitro. Virus Genes 2002, 25: 255-269. 10.1023/A:1020971823562CrossRefPubMed Fournier C, Cortay J-C, Carbonnelle C, Ehresmann C, Marquet R, Boulanger P: The HIV-1 Nef protein enhances the affinity of reverse transcriptase for RNA in vitro. Virus Genes 2002, 25: 255-269. 10.1023/A:1020971823562CrossRefPubMed
36.
go back to reference Huvent I, Hong SS, Fournier C, Gay B, Tournier J, Carriere C, Courcoul M, Vigne R, Spire B, Boulanger P: Interaction and co-encapsidation of HIV-1 Vif and Gag recombinant proteins. J Gen Virol 1998, 79: 1069-1081.CrossRefPubMed Huvent I, Hong SS, Fournier C, Gay B, Tournier J, Carriere C, Courcoul M, Vigne R, Spire B, Boulanger P: Interaction and co-encapsidation of HIV-1 Vif and Gag recombinant proteins. J Gen Virol 1998, 79: 1069-1081.CrossRefPubMed
37.
go back to reference Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzymol 1996, 266: 383-402.CrossRefPubMed Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzymol 1996, 266: 383-402.CrossRefPubMed
38.
go back to reference Guermeur Y, Geourjon C, Gallinari P, Deléage G: Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 1999, 15: 413-421. 10.1093/bioinformatics/15.5.413CrossRefPubMed Guermeur Y, Geourjon C, Gallinari P, Deléage G: Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 1999, 15: 413-421. 10.1093/bioinformatics/15.5.413CrossRefPubMed
39.
go back to reference King RD, Sternberg MJ: Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 1996, 5: 2298-2310.PubMedCentralCrossRefPubMed King RD, Sternberg MJ: Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 1996, 5: 2298-2310.PubMedCentralCrossRefPubMed
40.
go back to reference Rost B, Sander C: Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993, 232: 584-599. 10.1006/jmbi.1993.1413CrossRefPubMed Rost B, Sander C: Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993, 232: 584-599. 10.1006/jmbi.1993.1413CrossRefPubMed
41.
go back to reference Combet C, Blanchet C, Geourjon C, Deléage G: NPS@: network protein sequence analysis. Trends Biochem Sci 2000, 25: 147-150. 10.1016/S0968-0004(99)01540-6CrossRefPubMed Combet C, Blanchet C, Geourjon C, Deléage G: NPS@: network protein sequence analysis. Trends Biochem Sci 2000, 25: 147-150. 10.1016/S0968-0004(99)01540-6CrossRefPubMed
42.
go back to reference Esnouf RM: Polyalanine reconstruction from Calpha positions using the program CALPHA can aid initial phasing of data by molecular replacement procedures. Acta Cryst D 1997,53(6):665-672. 10.1107/S0907444997005829CrossRef Esnouf RM: Polyalanine reconstruction from Calpha positions using the program CALPHA can aid initial phasing of data by molecular replacement procedures. Acta Cryst D 1997,53(6):665-672. 10.1107/S0907444997005829CrossRef
43.
go back to reference Roussel A, Fontecilla-Camps JC, Cambillau C: CRYStallize: a crystallographic symmetry display and handling subpackage in TOM/FRODO. J Mol Graph 1990, 8: 86-88. 10.1016/0263-7855(90)80087-VCrossRefPubMed Roussel A, Fontecilla-Camps JC, Cambillau C: CRYStallize: a crystallographic symmetry display and handling subpackage in TOM/FRODO. J Mol Graph 1990, 8: 86-88. 10.1016/0263-7855(90)80087-VCrossRefPubMed
44.
go back to reference Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL: Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 1998, 54: 905-921. 10.1107/S0907444998003254CrossRefPubMed Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL: Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 1998, 54: 905-921. 10.1107/S0907444998003254CrossRefPubMed
45.
go back to reference Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22: 2577-2637. 10.1002/bip.360221211CrossRefPubMed Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22: 2577-2637. 10.1002/bip.360221211CrossRefPubMed
Metadata
Title
Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED
Authors
Dina Rakotobe
Sébastien Violot
Saw See Hong
Patrice Gouet
Pierre Boulanger
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2008
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-5-32

Other articles of this Issue 1/2008

Virology Journal 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.