Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Malaria | Research article

Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release -and-kill strategy for malaria vector control

Authors: Oscar Mbare, Steven W. Lindsay, Ulrike Fillinger

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Larviciding is an effective supplementary tool for malaria vector control, but the identification and accessibility of aquatic habitats impedes application. Dissemination of the insect growth regulator, pyriproxyfen (PPF), by gravid Anopheles might constitute a novel application strategy. This study aimed to explore the feasibility of using an attractive bait-station to contaminate gravid Anopheles gambiae sensu stricto with PPF and subsequently transfer PPF to larval habitats.

Methods

A bait-station was developed comprising of an artificial pond containing water treated with 20 ppm cedrol, an oviposition attractant, and a netting-cover treated with PPF. Three identical semi-field cages were used to assess the potential of gravid Anopheles to transfer PPF from the bait-station to ponds. Gravid females were released in two semi-field cages, one with PPF on its bait-station (test) and one without PPF (control). No mosquitoes were released in the third cage with a PPF-treated station (control). Transfer of PPF to open ponds was assessed by monitoring emergence of late instar insectary-reared larvae introduced into the ponds. The amount of PPF carried by a mosquito and transferred to water was quantified using liquid chromatography-mass spectrometry.

Results

In the controls, 86% (95% CI 81–89%) of larvae introduced into open ponds developed into adults, indicating that wind did not distribute PPF in absence of mosquitoes. Emergence inhibition was observed in the test cage but was dependent on the distance between pond and bait-station. Only 25% (95% CI 22–29%) of larvae emerged as adults from ponds 4 m from the bait-station, but 92% (95% CI 89–94%) emerged from ponds 10 m away. Each mosquito was contaminated on average with 112 μg (95% CI 93–123 μg) PPF resulting in the transfer of 230 ng/L (95% CI 180–290 ng/L) PPF to 100 ml volumes of water.

Conclusions

The bait-stations successfully attracted gravid females which were subsequently dusted with effective levels of PPF. However, in this study design, attraction and dissemination was limited to short distances. To make this approach feasible for malaria vector control, stronger attractants that lure gravid females from longer distances, in landscapes with many water bodies, and better PPF delivery systems are needed.
Literature
2.
go back to reference Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J. 2010;9:299.CrossRef Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J. 2010;9:299.CrossRef
3.
go back to reference Tambo E, Adedeji AA, Huang F, Chen JH, Sen ZS, Tang LH. Scaling up impact of malaria control programmes: a tale of events in sub-Saharan Africa and People’s republic of China. Infect Dis Poverty. 2012;1(1):7.CrossRef Tambo E, Adedeji AA, Huang F, Chen JH, Sen ZS, Tang LH. Scaling up impact of malaria control programmes: a tale of events in sub-Saharan Africa and People’s republic of China. Infect Dis Poverty. 2012;1(1):7.CrossRef
5.
go back to reference Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14(3):e1002380.CrossRef Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14(3):e1002380.CrossRef
6.
go back to reference Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Heal. 2017;2(2):e000211.CrossRef Killeen GF, Tatarsky A, Diabate A, Chaccour CJ, Marshall JM, Okumu FO, et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Heal. 2017;2(2):e000211.CrossRef
8.
go back to reference Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, et al. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS One. 2014;9(10):e107700.CrossRef Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, et al. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS One. 2014;9(10):e107700.CrossRef
9.
go back to reference Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Ke B, et al. Mosquito larval source management for controlling malaria ( review ). Cochrane Database Syst Rev. 2016;(8):CD008923. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Ke B, et al. Mosquito larval source management for controlling malaria ( review ). Cochrane Database Syst Rev. 2016;(8):CD008923.
10.
go back to reference Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.CrossRef Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.CrossRef
11.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87(9):655–65.CrossRef Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009;87(9):655–65.CrossRef
12.
go back to reference Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar Es Salaam, Tanzania. PLoS One. 2009;4(3):e5107.CrossRef Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar Es Salaam, Tanzania. PLoS One. 2009;4(3):e5107.CrossRef
13.
go back to reference Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar Es Salaam, Tanzania. PLoS One. 2013;8(8):e71638.CrossRef Maheu-Giroux M, Castro MC. Impact of community-based larviciding on the prevalence of malaria infection in Dar Es Salaam, Tanzania. PLoS One. 2013;8(8):e71638.CrossRef
14.
go back to reference Killeen GF, Govella NJ, Mlacha YP, Chaki PP. Suppression of malaria vector densities and human infection prevalence associated with scale-up of mosquito-proofed housing in Dar Es Salaam, Tanzania: re-analysis of an observational series of parasitological and entomological surveys. Lancet Planet Heal. 2019;3(3):e132–43.CrossRef Killeen GF, Govella NJ, Mlacha YP, Chaki PP. Suppression of malaria vector densities and human infection prevalence associated with scale-up of mosquito-proofed housing in Dar Es Salaam, Tanzania: re-analysis of an observational series of parasitological and entomological surveys. Lancet Planet Heal. 2019;3(3):e132–43.CrossRef
15.
go back to reference Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, et al. A tool box for operational mosquito larval control: preliminary results and early lessons from the urban malaria control Programme in Dar Es Salaam, Tanzania. Malar J. 2008;7:20.CrossRef Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, et al. A tool box for operational mosquito larval control: preliminary results and early lessons from the urban malaria control Programme in Dar Es Salaam, Tanzania. Malar J. 2008;7:20.CrossRef
16.
go back to reference Majambere S, Pinder M, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;82(2):176–84.CrossRef Majambere S, Pinder M, Fillinger U, Ameh D, Conway DJ, Green C, et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A cross-over intervention trial. Am J Trop Med Hyg. 2010;82(2):176–84.CrossRef
17.
go back to reference Chaki PP, Govella NJ, Shoo B, Hemed A, Tanner M, Fillinger U, et al. Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar Es Salaam, Tanzania. Malar J. 2009;8(1):311.CrossRef Chaki PP, Govella NJ, Shoo B, Hemed A, Tanner M, Fillinger U, et al. Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar Es Salaam, Tanzania. Malar J. 2009;8(1):311.CrossRef
18.
go back to reference Majambere S, Fillinger U, Lindsay SW, Green C, Sayer DR. Spatial distribution of mosquito larvae and the potential for targeted larval control in the Gambia. Am J Trop Med Hyg. 2008;79(1):19–27.CrossRef Majambere S, Fillinger U, Lindsay SW, Green C, Sayer DR. Spatial distribution of mosquito larvae and the potential for targeted larval control in the Gambia. Am J Trop Med Hyg. 2008;79(1):19–27.CrossRef
19.
go back to reference Gu W, Novak R. Habitat-based modeling of mosquito larval interventions on entomological inoculation rates, incidence and prevalence of malaria. Am J Trop Med Hyg. 2005;73(3):546–52.CrossRef Gu W, Novak R. Habitat-based modeling of mosquito larval interventions on entomological inoculation rates, incidence and prevalence of malaria. Am J Trop Med Hyg. 2005;73(3):546–52.CrossRef
20.
go back to reference Gu W, Utzinger J, Novak RJ. Habitat-based larval interventions: a new perspective for malaria control. Am J Trop Med Hyg. 2008;78(1):2–6.CrossRef Gu W, Utzinger J, Novak RJ. Habitat-based larval interventions: a new perspective for malaria control. Am J Trop Med Hyg. 2008;78(1):2–6.CrossRef
21.
go back to reference Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK, Fillinger U. Productivity of malaria vectors from different habitat types in the western Kenya highlands. PLoS One. 2011;6(4):e19473.CrossRef Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK, Fillinger U. Productivity of malaria vectors from different habitat types in the western Kenya highlands. PLoS One. 2011;6(4):e19473.CrossRef
22.
go back to reference Fillinger U, Sonye G, Killeen GF, Knols BGJ, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Heal. 2004;9:1274–89.CrossRef Fillinger U, Sonye G, Killeen GF, Knols BGJ, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Heal. 2004;9:1274–89.CrossRef
23.
go back to reference Fillinger U, Sombroek H, Majambere S, Van Loon E, Takken W, Lindsay SW. Identifying the most productive breeding sites for malaria mosquitoes in the Gambia. Malar J. 2009;8(1):62.CrossRef Fillinger U, Sombroek H, Majambere S, Van Loon E, Takken W, Lindsay SW. Identifying the most productive breeding sites for malaria mosquitoes in the Gambia. Malar J. 2009;8(1):62.CrossRef
24.
go back to reference Caputo B, Ienco A, Cianci D, Pombi M, Petrarca V, Baseggio A, et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl Trop Dis. 2012;6(8):e1793.CrossRef Caputo B, Ienco A, Cianci D, Pombi M, Petrarca V, Baseggio A, et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl Trop Dis. 2012;6(8):e1793.CrossRef
25.
go back to reference Unlu I, Suman DS, Wang Y, Klingler K, Faraji A, Gaugler R. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit Vectors. 2017;10(1):139.CrossRef Unlu I, Suman DS, Wang Y, Klingler K, Faraji A, Gaugler R. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit Vectors. 2017;10(1):139.CrossRef
26.
go back to reference Swale DR, Li Z, Kraft JZ, Healy K, Liu M, David CM, et al. Development of an autodissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae). PLoS Negl Trop Dis. 2018;12(4):e0006259.CrossRef Swale DR, Li Z, Kraft JZ, Healy K, Liu M, David CM, et al. Development of an autodissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae). PLoS Negl Trop Dis. 2018;12(4):e0006259.CrossRef
27.
go back to reference Mian LS, Dhillon MS, Dodson L. Field evaluation of pyriproxyfen against mosquitoes in catch basins in southern California. J Am Mosq Control Assoc. 2017;33(2):145–7.CrossRef Mian LS, Dhillon MS, Dodson L. Field evaluation of pyriproxyfen against mosquitoes in catch basins in southern California. J Am Mosq Control Assoc. 2017;33(2):145–7.CrossRef
28.
go back to reference Devine GJ, Killeen GF. The potential of a new larviciding method for the control of malaria vectors. Malar J. 2010;9(1):142.CrossRef Devine GJ, Killeen GF. The potential of a new larviciding method for the control of malaria vectors. Malar J. 2010;9(1):142.CrossRef
29.
go back to reference Kiware SS, Corliss G, Merrill S, Lwetoijera DW, Devine G, Majambere S, et al. Predicting scenarios for successful autodissemination of pyriproxyfen by malaria vectors from their resting sites to aquatic habitats; description and simulation analysis of a field-parameterizable model. PLoS One. 2015;10(7):e0131835.CrossRef Kiware SS, Corliss G, Merrill S, Lwetoijera DW, Devine G, Majambere S, et al. Predicting scenarios for successful autodissemination of pyriproxyfen by malaria vectors from their resting sites to aquatic habitats; description and simulation analysis of a field-parameterizable model. PLoS One. 2015;10(7):e0131835.CrossRef
30.
go back to reference Lwetoijera D, Harris C, Kiware S, Dongus S, Devine GJ, McCall PJ. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 2014;13(1):161.CrossRef Lwetoijera D, Harris C, Kiware S, Dongus S, Devine GJ, McCall PJ. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 2014;13(1):161.CrossRef
31.
go back to reference Lwetoijera DW, Harris C, Kiware SS, Killeen GF, Dongus S, Devine GJ, et al. Short report: comprehensive sterilization of malaria vectors using pyriproxyfen: a step closer to malaria elimination. Am J Trop Med Hyg. 2014;90(5):852–5.CrossRef Lwetoijera DW, Harris C, Kiware SS, Killeen GF, Dongus S, Devine GJ, et al. Short report: comprehensive sterilization of malaria vectors using pyriproxyfen: a step closer to malaria elimination. Am J Trop Med Hyg. 2014;90(5):852–5.CrossRef
32.
go back to reference Lwetoijera D, Kiware S, Okumu F, Devine GJ, Majambere S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar J. 2019;18(1):166.CrossRef Lwetoijera D, Kiware S, Okumu F, Devine GJ, Majambere S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar J. 2019;18(1):166.CrossRef
33.
go back to reference Djènontin A, Ahoua Alou LP, Koffi A, Zogo B, Duarte E, N’Guessan R, et al. Insecticidal and sterilizing effect of Olyset duo ® , a permethrin and pyriproxyfen mixture net against pyrethroid-susceptible and -resistant strains of Anopheles gambiae s.s. : a release-recapture assay in experimental huts. Parasite. 2015;22:27.CrossRef Djènontin A, Ahoua Alou LP, Koffi A, Zogo B, Duarte E, N’Guessan R, et al. Insecticidal and sterilizing effect of Olyset duo ® , a permethrin and pyriproxyfen mixture net against pyrethroid-susceptible and -resistant strains of Anopheles gambiae s.s. : a release-recapture assay in experimental huts. Parasite. 2015;22:27.CrossRef
34.
go back to reference Ngufor C, N’Guessan R, Fagbohoun J, Odjo A, Malone D, Akogbeto M, et al. Olyset duo® (a pyriproxyfen and permethrin mixture net): an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in southern Benin. PLoS One. 2014;9(4):e93603.CrossRef Ngufor C, N’Guessan R, Fagbohoun J, Odjo A, Malone D, Akogbeto M, et al. Olyset duo® (a pyriproxyfen and permethrin mixture net): an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in southern Benin. PLoS One. 2014;9(4):e93603.CrossRef
35.
go back to reference Mbare O, Lindsay SW, Fillinger U. Pyriproxyfen for mosquito control: female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus. Parasit Vectors. 2014;7(1):280.CrossRef Mbare O, Lindsay SW, Fillinger U. Pyriproxyfen for mosquito control: female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus. Parasit Vectors. 2014;7(1):280.CrossRef
36.
go back to reference Ohashi K, Nakada K, Ishiwatari T, Miyaguchi J, Shono Y, Lucas JR, et al. Efficacy of pyriproxyfen-treated nets in sterilizing and shortening the longevity of Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 2012;49(5):1052–8.CrossRef Ohashi K, Nakada K, Ishiwatari T, Miyaguchi J, Shono Y, Lucas JR, et al. Efficacy of pyriproxyfen-treated nets in sterilizing and shortening the longevity of Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 2012;49(5):1052–8.CrossRef
37.
go back to reference Harris C, Lwetoijera DW, Dongus S, Matowo NS, Lorenz LM, Devine GJ, et al. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control. Parasit Vectors. 2013;6(1):144.CrossRef Harris C, Lwetoijera DW, Dongus S, Matowo NS, Lorenz LM, Devine GJ, et al. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control. Parasit Vectors. 2013;6(1):144.CrossRef
38.
go back to reference Okal MN, Francis B, Herrera-Varela M, Fillinger U, Lindsay SW. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto. Malar J. 2013;12(1):365.CrossRef Okal MN, Francis B, Herrera-Varela M, Fillinger U, Lindsay SW. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto. Malar J. 2013;12(1):365.CrossRef
39.
go back to reference Herrera-Varela M, Lindh J, Lindsay SW, Fillinger U. Habitat discrimination by gravid Anopheles gambiae sensu lato - a push-pull system. Malar J. 2014;13(1):133.CrossRef Herrera-Varela M, Lindh J, Lindsay SW, Fillinger U. Habitat discrimination by gravid Anopheles gambiae sensu lato - a push-pull system. Malar J. 2014;13(1):133.CrossRef
40.
go back to reference Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson A-K, Torto B, Lindsay SW, et al. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J. 2015;14(1):119.CrossRef Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson A-K, Torto B, Lindsay SW, et al. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J. 2015;14(1):119.CrossRef
41.
go back to reference Charlwood JD, Kessy E, Yohannes K, Protopopoff N, Rowland M, LeClair C. Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba, Tanzania. Med Vet Entomol. 2018;32(3):263–70.CrossRef Charlwood JD, Kessy E, Yohannes K, Protopopoff N, Rowland M, LeClair C. Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba, Tanzania. Med Vet Entomol. 2018;32(3):263–70.CrossRef
42.
go back to reference Das S, Garver L, Dimopoulos G. Protocol for mosquito rearing (A. gambiae). J Vis Exp. 2007;(5):e221. Das S, Garver L, Dimopoulos G. Protocol for mosquito rearing (A. gambiae). J Vis Exp. 2007;(5):e221.
43.
go back to reference Wang M. Generalized estimating equations in longitudinal data analysis: a review and recent developments. Adv Stat. 2014;2014:303728. Wang M. Generalized estimating equations in longitudinal data analysis: a review and recent developments. Adv Stat. 2014;2014:303728.
44.
go back to reference Ma Y, Mazumdar M, Memtsoudis SG. Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg Anesth Pain Med. 2012;37(1):99–105.CrossRef Ma Y, Mazumdar M, Memtsoudis SG. Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg Anesth Pain Med. 2012;37(1):99–105.CrossRef
45.
go back to reference Okal MN, Lindh JM, Torr SJ, Masinde E, Orindi B, Lindsay SW, et al. Analysing the oviposition behaviour of malaria mosquitoes: design considerations for improving two-choice egg count experiments. Malar J. 2015;14(1):250.CrossRef Okal MN, Lindh JM, Torr SJ, Masinde E, Orindi B, Lindsay SW, et al. Analysing the oviposition behaviour of malaria mosquitoes: design considerations for improving two-choice egg count experiments. Malar J. 2015;14(1):250.CrossRef
46.
go back to reference Koama B, Namountougou M, Sanou R, Ndo S, Ouattara A, Dabiré RK, et al. The sterilizing effect of pyriproxyfen on the malaria vector Anopheles gambiae: physiological impact on ovaries development. Malar J. 2015;14(1):101.CrossRef Koama B, Namountougou M, Sanou R, Ndo S, Ouattara A, Dabiré RK, et al. The sterilizing effect of pyriproxyfen on the malaria vector Anopheles gambiae: physiological impact on ovaries development. Malar J. 2015;14(1):101.CrossRef
47.
go back to reference Eneh LK, Saijo H, Karin A, Karlson B, Lindh JM, Rajarao GK. Cedrol , a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malar J. 2016;15:478.CrossRef Eneh LK, Saijo H, Karin A, Karlson B, Lindh JM, Rajarao GK. Cedrol , a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malar J. 2016;15:478.CrossRef
48.
go back to reference Wondwosen B, Birgersson G, Seyoum E, Tekie H, Torto B, Fillinger U, et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci Rep. 2016;6:37930.CrossRef Wondwosen B, Birgersson G, Seyoum E, Tekie H, Torto B, Fillinger U, et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci Rep. 2016;6:37930.CrossRef
49.
go back to reference Andriessen R, Snetselaar J, Suer RA, Osinga AJ, Deschietere J, Lyimo IN, et al. Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci. 2015;112(39):12081–6.CrossRef Andriessen R, Snetselaar J, Suer RA, Osinga AJ, Deschietere J, Lyimo IN, et al. Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci. 2015;112(39):12081–6.CrossRef
50.
go back to reference Eneh LK, Fillinger U, Borg Karlson AK, Kuttuva Rajarao G, Lindh J. Anopheles arabiensis oviposition site selection in response to habitat persistence and associated physicochemical parameters, bacteria and volatile profiles. Med Vet Entomol. 2019;33(1):56–67.CrossRef Eneh LK, Fillinger U, Borg Karlson AK, Kuttuva Rajarao G, Lindh J. Anopheles arabiensis oviposition site selection in response to habitat persistence and associated physicochemical parameters, bacteria and volatile profiles. Med Vet Entomol. 2019;33(1):56–67.CrossRef
51.
go back to reference Wondwosen B, Birgersson G, Tekie H, Torto B, Ignell R, Hill SR. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar J. 2018;17(1):90.CrossRef Wondwosen B, Birgersson G, Tekie H, Torto B, Ignell R, Hill SR. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar J. 2018;17(1):90.CrossRef
52.
go back to reference Arkles B. Hydrophobicity, hydrophilicity and Silane surface modification. Gelest Inc. 2015;1:1–84. Arkles B. Hydrophobicity, hydrophilicity and Silane surface modification. Gelest Inc. 2015;1:1–84.
53.
go back to reference Schneider M, Smagghe G, Pineda S, Viñuela E. The ecological impact of four IGR insecticides in adults of Hyposoter didymator (Hym., Ichneumonidae): pharmacokinetics approach. Ecotoxicology. 2008;17:181.CrossRef Schneider M, Smagghe G, Pineda S, Viñuela E. The ecological impact of four IGR insecticides in adults of Hyposoter didymator (Hym., Ichneumonidae): pharmacokinetics approach. Ecotoxicology. 2008;17:181.CrossRef
54.
go back to reference Medina P, Smagghe G, Budia F, del Estal P, Tirry L, Viñuela E. Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch Insect Biochem Physiol. 2002;51:91–101.CrossRef Medina P, Smagghe G, Budia F, del Estal P, Tirry L, Viñuela E. Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch Insect Biochem Physiol. 2002;51:91–101.CrossRef
55.
go back to reference Itoh T, Kawada H, Abe A, Eshita Y, Rongsriyam Y, Igarashi A. Utilization of bloodfed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator pyriproxyfen to larval habitats. J Am Mosq Control Assoc. 1994;10:344–7.PubMed Itoh T, Kawada H, Abe A, Eshita Y, Rongsriyam Y, Igarashi A. Utilization of bloodfed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator pyriproxyfen to larval habitats. J Am Mosq Control Assoc. 1994;10:344–7.PubMed
56.
go back to reference Mbare O, Lindsay SW, Fillinger U. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato. Malar J. 2013;12(1):94.CrossRef Mbare O, Lindsay SW, Fillinger U. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato. Malar J. 2013;12(1):94.CrossRef
57.
go back to reference Burkett-Cadena ND, Eubanks MD, Unnasch TR. Preference of female mosquitoes for natural and artificial resting sites. J Am Mosq Control Assoc. 2008;24(2):228–35.CrossRef Burkett-Cadena ND, Eubanks MD, Unnasch TR. Preference of female mosquitoes for natural and artificial resting sites. J Am Mosq Control Assoc. 2008;24(2):228–35.CrossRef
59.
go back to reference Odero JO, Fillinger U, Rippon EJ, Masiga DK, Weetman D. Using sibship reconstructions to understand the relationship between larval habitat productivity and oviposition behaviour in Kenyan Anopheles arabiensis. Malar J. 2019;18(1):286.CrossRef Odero JO, Fillinger U, Rippon EJ, Masiga DK, Weetman D. Using sibship reconstructions to understand the relationship between larval habitat productivity and oviposition behaviour in Kenyan Anopheles arabiensis. Malar J. 2019;18(1):286.CrossRef
Metadata
Title
Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release -and-kill strategy for malaria vector control
Authors
Oscar Mbare
Steven W. Lindsay
Ulrike Fillinger
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Malaria
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4438-9

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.