Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: entomological surveillance results from a cluster-randomized trial

Authors: Joseph M. Wagman, Kenyssony Varela, Rose Zulliger, Abuchahama Saifodine, Rodaly Muthoni, Stephen Magesa, Carlos Chaccour, Christelle Gogue, Kenzie Tynuv, Aklilu Seyoum, Dereje Dengela, Francisco Saúte, Jason H. Richardson, Christen Fornadel, Yvonne-Marie Linton, Laurence Slutsker, Baltazar Candrinho, Molly Robertson

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

The need to develop new products and novel approaches for malaria vector control is recognized as a global health priority. One approach to meeting this need has been the development of new products for indoor residual spraying (IRS) with novel active ingredients for public health. While initial results showing the impact of several of these next-generation IRS products have been encouraging, questions remain about how to best deploy them for maximum impact. To help address these questions, a 2-year cluster-randomized controlled trial to measure the impact of IRS with a microencapsulated formulation of pirimiphos-methyl (PM) in an area with high ownership of long-lasting insecticidal nets (LLINs) was conducted in a high-transmission district of central Mozambique with pyrethroid resistant vectors. Presented here are the results of the vector surveillance component of the trial.

Methods

The 2 year, two-armed trial was conducted in Mopeia District, Zambezia Province, Mozambique. In ten sentinel villages, five that received IRS with PM in October–November 2016 and again in October–November 2017 and five that received no IRS, indoor light trap collections and paired indoor-outdoor human landing collections catches (HLCs) were conducted monthly from September 2016 through October 2018. A universal coverage campaign in June 2017, just prior to the second spray round, distributed 131,540 standard alpha-cypermethrin LLINs across all study villages and increased overall net usage rates in children under 5 years old to over 90%.

Results

The primary malaria vector during the trial was Anopheles funestus sensu lato (s.l.), and standard World Health Organization (WHO) tube tests with this population indicated variable but increasing resistance to pyrethroids (including alpha-cypermethrin, from > 85% mortality in 2017 to 7% mortality in 2018) and uniform susceptibility to PM (100% mortality in both years). Over the entire duration of the study, IRS reduced An. funestus s.l. densities by 48% (CI95 33–59%; p < 0.001) in indoor light traps and by 74% (CI95 38–90%; p = 0.010) during indoor and outdoor HLC, though in each study year reductions in vector density were consistently greatest in those months immediately following the IRS campaigns and waned over time. Overall there was no strong preference for An. funestus to feed indoors or outdoors, and these biting behaviours did not differ significantly across study arms: observed indoor-outdoor biting ratios were 1.10 (CI95 1.00–1.21) in no-IRS villages and 0.88 (CI95 0.67–1.15) in IRS villages. The impact of IRS was consistent in reducing HLC exposures both indoors (75% reduction: CI95 47–88%; p = 0. < 0.001) and outdoors (68% reduction: CI95 22–87%; p = 0.012). While substantially fewer Anopheles gambiae s.l. were collected during the study, trends show a similar impact of IRS on this key vector group as well, with a 33% (CI95 7–53%; p = 0.019) reduction in mosquitoes collected in light traps and a non-statistically significant 39% reduction (p = 0.249) in HLC landing rates.

Conclusion

IRS with PM used in addition to pyrethroid-only LLINs substantially reduced human exposures to malaria vectors during both years of the cluster-randomized controlled trial in Mopeia—a high-burden district where the primary vector, An. funestus s.l., was equally likely to feed indoors or outdoors and demonstrated increasing resistance to pyrethroids. Findings suggest that IRS with PM can provide effective vector control, including in some settings where pyrethroid-only ITNs are widely used.
Trial registration clinicaltrials.​gov, NCT02910934. Registered 22 September 2016, https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT02910934.​
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef
2.
go back to reference Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2015.
3.
go back to reference Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9.CrossRef Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9.CrossRef
4.
go back to reference Kafy HT, Ismail BA, Mnzava AP, Lines J, Abdin MSE, Eltaher JS, et al. Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation. Proc Natl Acad Sci USA. 2017;114:e11267–75.CrossRef Kafy HT, Ismail BA, Mnzava AP, Lines J, Abdin MSE, Eltaher JS, et al. Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation. Proc Natl Acad Sci USA. 2017;114:e11267–75.CrossRef
5.
go back to reference Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRef Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRef
6.
go back to reference Alonso P, Noor AM. The global fight against malaria is at crossroads. Lancet. 2017;390:2532–4.CrossRef Alonso P, Noor AM. The global fight against malaria is at crossroads. Lancet. 2017;390:2532–4.CrossRef
7.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
8.
go back to reference Oxborough RM. Trends in US President’s Malaria Initiative–funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008–2015): urgent need for affordable, long-lasting insecticides. Malar J. 2016;15:146.CrossRef Oxborough RM. Trends in US President’s Malaria Initiative–funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008–2015): urgent need for affordable, long-lasting insecticides. Malar J. 2016;15:146.CrossRef
9.
go back to reference The malERA Refresh Consultative Panel on Tools for Malaria Elimination. malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14:e1002455.CrossRef The malERA Refresh Consultative Panel on Tools for Malaria Elimination. malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14:e1002455.CrossRef
10.
go back to reference The malERA Refresh Consultative Panel on Insecticide and Drug Resistance. malERA: an updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med. 2017;14:e1002450.CrossRef The malERA Refresh Consultative Panel on Insecticide and Drug Resistance. malERA: an updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med. 2017;14:e1002450.CrossRef
11.
go back to reference WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012. WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012.
12.
go back to reference Mashauri FM, Manjurano A, Kinung’hi S, Martine J, Lyimo E, Kishamawe C, et al. Indoor residual spraying with micro-encapsulated pirimiphos-methyl (Actellic® 300CS) against malaria vectors in the Lake Victoria basin, Tanzania. PLoS ONE. 2017;12:e0176982.CrossRef Mashauri FM, Manjurano A, Kinung’hi S, Martine J, Lyimo E, Kishamawe C, et al. Indoor residual spraying with micro-encapsulated pirimiphos-methyl (Actellic® 300CS) against malaria vectors in the Lake Victoria basin, Tanzania. PLoS ONE. 2017;12:e0176982.CrossRef
13.
go back to reference Sy O, Niang EHA, Ndiaye M, Konaté L, Diallo A, Ba ECC, et al. Entomological impact of indoor residual spraying with pirimiphos-methyl: a pilot study in an area of low malaria transmission in Senegal. Malar J. 2018;17:64.CrossRef Sy O, Niang EHA, Ndiaye M, Konaté L, Diallo A, Ba ECC, et al. Entomological impact of indoor residual spraying with pirimiphos-methyl: a pilot study in an area of low malaria transmission in Senegal. Malar J. 2018;17:64.CrossRef
14.
go back to reference Abuaku B, Ahorlu C, Psychas P, Ricks P, Oppong S, Mensah S, et al. Impact of indoor residual spraying on malaria parasitaemia in the Bunkpurugu-Yunyoo District in northern Ghana. Parasites Vectors. 2018;11:555.CrossRef Abuaku B, Ahorlu C, Psychas P, Ricks P, Oppong S, Mensah S, et al. Impact of indoor residual spraying on malaria parasitaemia in the Bunkpurugu-Yunyoo District in northern Ghana. Parasites Vectors. 2018;11:555.CrossRef
15.
go back to reference Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–88.CrossRef Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–88.CrossRef
16.
go back to reference Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, et al. An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012–2015. Malar J. 2018;17:19.CrossRef Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, et al. An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012–2015. Malar J. 2018;17:19.CrossRef
17.
go back to reference Agossa FR, Padonou GG, Koukpo CZ, Zola-Sahossi J, Azondekon R, Akuoko OK, et al. Efficacy of a novel mode of action of an indoor residual spraying product, SumiShield® 50WG against susceptible and resistant populations of Anopheles gambiae (s.l.) in Benin, West Africa. Parasites Vectors. 2018;11:293.CrossRef Agossa FR, Padonou GG, Koukpo CZ, Zola-Sahossi J, Azondekon R, Akuoko OK, et al. Efficacy of a novel mode of action of an indoor residual spraying product, SumiShield® 50WG against susceptible and resistant populations of Anopheles gambiae (s.l.) in Benin, West Africa. Parasites Vectors. 2018;11:293.CrossRef
18.
go back to reference Fongnikin A, Houeto N, Agbevo A, Odjo A, Syme T, N’Guessan R, et al. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: laboratory and experimental hut evaluation. Parasites Vectors. 2020;13:466.CrossRef Fongnikin A, Houeto N, Agbevo A, Odjo A, Syme T, N’Guessan R, et al. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: laboratory and experimental hut evaluation. Parasites Vectors. 2020;13:466.CrossRef
19.
go back to reference Chaccour CJ, Alonso S, Zulliger R, Wagman J, Saifodine A, Candrinho B, et al. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol. BMJ Glob Health. 2018;3:e000610.CrossRef Chaccour CJ, Alonso S, Zulliger R, Wagman J, Saifodine A, Candrinho B, et al. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol. BMJ Glob Health. 2018;3:e000610.CrossRef
20.
go back to reference Chaccour C, Gogue C, Wagman J, Tynuv K, Alonso S, Zulliger R, et al. A cluster randomized trial to measure the impact of indoor residual spraying with a third-generation indoor residual spray (3GIRS) product in combination with long-lasting insecticide-treated nets in Zambezia, Mozambique. 2018. In: At the annual meeting of the American Society of Tropical Medicine and Hygiene, New Orleans, USA. Chaccour C, Gogue C, Wagman J, Tynuv K, Alonso S, Zulliger R, et al. A cluster randomized trial to measure the impact of indoor residual spraying with a third-generation indoor residual spray (3GIRS) product in combination with long-lasting insecticide-treated nets in Zambezia, Mozambique. 2018. In: At the annual meeting of the American Society of Tropical Medicine and Hygiene, New Orleans, USA.
22.
go back to reference Ministério da Saúde (MISAU), Instituto Nacional de Estatística (INE), ICF Internacional. Inquérito de Indicadores de Imunização, Malária e HIV/SIDA em Moçambique 2015. Maputo, Moçambique. Rockville, Maryland, USA; 2015. Ministério da Saúde (MISAU), Instituto Nacional de Estatística (INE), ICF Internacional. Inquérito de Indicadores de Imunização, Malária e HIV/SIDA em Moçambique 2015. Maputo, Moçambique. Rockville, Maryland, USA; 2015.
23.
go back to reference PMI Africa Indoor Residual Spraying (PMI AIRS) Project. Mozambique entomological monitoring annual report. Maputo, Mozambique: PMI AIRS, Abt Associates Inc. USA; 2016. PMI Africa Indoor Residual Spraying (PMI AIRS) Project. Mozambique entomological monitoring annual report. Maputo, Mozambique: PMI AIRS, Abt Associates Inc. USA; 2016.
24.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization; 2016. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization; 2016.
25.
go back to reference Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol. 2009;46:1256–9.CrossRef Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol. 2009;46:1256–9.CrossRef
26.
go back to reference The PMI VectorLink Project Mozambique. Mozambique entomological monitoring annual report, July 2017–June 2018. Rockville, MD, PMI VectorLink Project, Abt Associates Inc., USA; 2018. The PMI VectorLink Project Mozambique. Mozambique entomological monitoring annual report, July 2017–June 2018. Rockville, MD, PMI VectorLink Project, Abt Associates Inc., USA; 2018.
27.
go back to reference The PMI VectorLink Project Mozambique. Mozambique entomological monitoring annual report, July 2018–June 2019 Rockville, MD, PMI VectorLink Project, Abt Associates Inc., USA; 2019. The PMI VectorLink Project Mozambique. Mozambique entomological monitoring annual report, July 2018–June 2019 Rockville, MD, PMI VectorLink Project, Abt Associates Inc., USA; 2019.
28.
go back to reference PMI Africa IRS (AIRS) Project, indoor residual spraying (IRS 2) task order six—Mozambique 2016 end of spray report 2016. Bethesda, MD: Abt Associates Inc. USA; 2017. PMI Africa IRS (AIRS) Project, indoor residual spraying (IRS 2) task order six—Mozambique 2016 end of spray report 2016. Bethesda, MD: Abt Associates Inc. USA; 2017.
29.
go back to reference PMI Africa IRS (AIRS) Project, indoor residual spraying (IRS 2) task order six. Mozambique 2017 end of spray report 2017. Rockville, MD: Abt Associates Inc., USA; 2018. PMI Africa IRS (AIRS) Project, indoor residual spraying (IRS 2) task order six. Mozambique 2017 end of spray report 2017. Rockville, MD: Abt Associates Inc., USA; 2018.
30.
go back to reference Gillies MT, Coetzee MA. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ South Afr Inst Med Res (Johannesburg). 1987;55:1–143. Gillies MT, Coetzee MA. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ South Afr Inst Med Res (Johannesburg). 1987;55:1–143.
31.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef
32.
go back to reference Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.CrossRef Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.CrossRef
33.
go back to reference Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRef Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.CrossRef
34.
go back to reference Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.CrossRef Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.CrossRef
35.
go back to reference Methods in Anopheles Research—2015 Edition. Manassas, VA: Malaria Research and Reference Reagent Resource Center (MR4); 2015. Methods in Anopheles Research—2015 Edition. Manassas, VA: Malaria Research and Reference Reagent Resource Center (MR4); 2015.
36.
go back to reference Linton YM, Pecor JE, Porter CH, et al. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes. Mem Inst Oswaldo Cruz. 2008;108:100–9.CrossRef Linton YM, Pecor JE, Porter CH, et al. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes. Mem Inst Oswaldo Cruz. 2008;108:100–9.CrossRef
37.
go back to reference Methods in Anopheles Research 2015 Edition. Manassas, VA: Malaria Research and Reference Reagent Resource Center (MR4); 2015. Chapter 8.1 Plasmodium detection by PCR in mosquitoes. Methods in Anopheles Research 2015 Edition. Manassas, VA: Malaria Research and Reference Reagent Resource Center (MR4); 2015. Chapter 8.1 Plasmodium detection by PCR in mosquitoes.
38.
go back to reference Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia. Malar J. 2017;16:30.CrossRef Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia. Malar J. 2017;16:30.CrossRef
Metadata
Title
Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: entomological surveillance results from a cluster-randomized trial
Authors
Joseph M. Wagman
Kenyssony Varela
Rose Zulliger
Abuchahama Saifodine
Rodaly Muthoni
Stephen Magesa
Carlos Chaccour
Christelle Gogue
Kenzie Tynuv
Aklilu Seyoum
Dereje Dengela
Francisco Saúte
Jason H. Richardson
Christen Fornadel
Yvonne-Marie Linton
Laurence Slutsker
Baltazar Candrinho
Molly Robertson
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03583-8

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine