Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Molecular and morphological identification of suspected Plasmodium vivax vectors in Central and Eastern Sudan

Authors: Omnia Fathelrhman Abdelwhab, Arwa Elaagip, Musab M. Albsheer, Ayman Ahmed, Giacomo Maria Paganotti, Muzamil Mahdi Abdel Hamid

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

In spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans. Plasmodium falciparum is the dominant malaria parasite in sub-Saharan Africa. However, Plasmodium vivax is becoming widely spread throughout Africa. The overuse of vector control methods has resulted in a remarkable change in the behaviour of mosquito that feeds on human as well as on vector composition. The aim of this study was to identify Anopheles mosquito species in vivax malaria endemic regions and to investigate their role in P. vivax circumsporozoite protein (Pvcsp) allele diversity.

Methods

Mosquito samples were collected from Central Sudan (Rural Khartoum and Sennar) and Eastern Sudan (New Halfa, Kassala state) using pyrethrum spray catch (PSC) and CDC light traps. Mosquitoes were identified using appropriate morphological identification keys and Anopheles gambiae complex were confirmed to species level using molecular analysis. A subset of blood-fed anopheline mosquitoes were dissected to determine the presence of natural infection of malaria parasites. In addition, the rest of the samples were investigated for the presence of Pvcsp gene using nested-PCR.

Results

A total of 1037 adult anopheline mosquitoes were collected from New Halfa (N = 467), Rural Khartoum (N = 132), and Sennar (N = 438). Morphological and molecular identification of the collected mosquitoes revealed the presence of Anopheles arabiensis (94.2%), Anopheles funestus (0.5%), and Anopheles pharoensis (5.4%). None of the dissected mosquitoes (N = 108) showed to be infected with malaria parasite. Overall P. vivax infectivity rate was 6.1% (63/1037) by Pvcsp nested PCR. Co-dominance of An. arabiensis and An. pharoensis is reported in Sennar state both being infected with P. vivax.

Conclusion

This study reported P. vivax infection among wild-caught anopheline mosquitoes in Central and Eastern Sudan. While An. arabiensis is the most abundant vector observed in all study areas, An. funestus was recorded for the first time in New Halfa, Eastern Sudan. The documented Anopheles species are implicated in Pvcsp allele diversity. Large-scale surveys are needed to identify the incriminated vectors of P. vivax malaria and determine their contribution in disease transmission dynamics.
Literature
3.
go back to reference Guerra C, Howes R, Patil A, Gething P, Van Boeckel T, Temperley W, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010;4:e774.PubMedPubMedCentralCrossRef Guerra C, Howes R, Patil A, Gething P, Van Boeckel T, Temperley W, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010;4:e774.PubMedPubMedCentralCrossRef
4.
go back to reference Tjitra E, Anstey N, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua. Indonesia PLoS Med. 2008;5:e128.PubMedCrossRef Tjitra E, Anstey N, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua. Indonesia PLoS Med. 2008;5:e128.PubMedCrossRef
5.
go back to reference Mahgoub H, Gasim G, Musa I, Adam I. Severe Plasmodium vivax malaria among Sudanese children at New Halfa Hospital. Eastern Sudan Parasit Vectors. 2012;5:154.PubMedCrossRef Mahgoub H, Gasim G, Musa I, Adam I. Severe Plasmodium vivax malaria among Sudanese children at New Halfa Hospital. Eastern Sudan Parasit Vectors. 2012;5:154.PubMedCrossRef
8.
go back to reference Howes R, Reiner R Jr, Battle K, Longbottom J, Mappin B, Ordanovich D, et al. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis. 2015;9:e0004222.PubMedPubMedCentralCrossRef Howes R, Reiner R Jr, Battle K, Longbottom J, Mappin B, Ordanovich D, et al. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis. 2015;9:e0004222.PubMedPubMedCentralCrossRef
9.
go back to reference Miller L, Mason S, Clyde D, McGinniss M. The resistance factor to Plasmodium vivax in blacks - The Duffy-blood-group genotype. FyFy N Engl J Med. 1976;295:302–4.PubMedCrossRef Miller L, Mason S, Clyde D, McGinniss M. The resistance factor to Plasmodium vivax in blacks - The Duffy-blood-group genotype. FyFy N Engl J Med. 1976;295:302–4.PubMedCrossRef
11.
go back to reference Mendis K, Sina B, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001;64(1–2 Suppl):97–106.PubMedCrossRef Mendis K, Sina B, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001;64(1–2 Suppl):97–106.PubMedCrossRef
12.
13.
go back to reference Twohig K, Pfeffer D, Baird J, Price R, Zimmerman P, Hay S, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis. 2019;13:e0007140.PubMedPubMedCentralCrossRef Twohig K, Pfeffer D, Baird J, Price R, Zimmerman P, Hay S, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis. 2019;13:e0007140.PubMedPubMedCentralCrossRef
14.
go back to reference Ryan J, Stoute J, Amon J, Dunton R, Mtalib R, Koros J, et al. Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. Am J Trop Med Hyg. 2006;75:575–81.PubMedCrossRef Ryan J, Stoute J, Amon J, Dunton R, Mtalib R, Koros J, et al. Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. Am J Trop Med Hyg. 2006;75:575–81.PubMedCrossRef
15.
go back to reference Abdelraheem M, Albsheer M, Mohamed H, Amin M, Mahdi Abdel Hamid M. Transmission of Plasmodium vivax in Duffy-negative individuals in central Sudan. Trans R Soc Trop Med Hyg. 2016;110:258–60. Abdelraheem M, Albsheer M, Mohamed H, Amin M, Mahdi Abdel Hamid M. Transmission of Plasmodium vivax in Duffy-negative individuals in central Sudan. Trans R Soc Trop Med Hyg. 2016;110:258–60.
17.
go back to reference Hussien M, Abdel Hamid M, Elamin E, Hassan A, Elaagip A, Salama A, et al. Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015–2017. PLoS ONE. 2020;15:e0235401.PubMedPubMedCentralCrossRef Hussien M, Abdel Hamid M, Elamin E, Hassan A, Elaagip A, Salama A, et al. Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015–2017. PLoS ONE. 2020;15:e0235401.PubMedPubMedCentralCrossRef
18.
go back to reference Elgoraish A, Elzaki S, Ahmed R, Ahmed A, Fadlalmula H, Abdalgader Mohamed S, et al. Epidemiology and distribution of Plasmodium vivax malaria in Sudan. Trans R Soc Trop Med Hyg. 2019;trz044. Elgoraish A, Elzaki S, Ahmed R, Ahmed A, Fadlalmula H, Abdalgader Mohamed S, et al. Epidemiology and distribution of Plasmodium vivax malaria in Sudan. Trans R Soc Trop Med Hyg. 2019;trz044.
19.
go back to reference Suliman M, Hamad B, Albasheer M, Elhadi M, Amin Mustafa M, Elobied M, et al. Molecular evidence of high proportion of Plasmodium vivax malaria infection in White Nile area in Sudan. J Parasitol Res. 2016;2016:2892371.PubMedPubMedCentralCrossRef Suliman M, Hamad B, Albasheer M, Elhadi M, Amin Mustafa M, Elobied M, et al. Molecular evidence of high proportion of Plasmodium vivax malaria infection in White Nile area in Sudan. J Parasitol Res. 2016;2016:2892371.PubMedPubMedCentralCrossRef
20.
go back to reference WHO. Global Strategic Framework for Integrated Vector Management. Geneva, World Health Organization, 2004. WHO. Global Strategic Framework for Integrated Vector Management. Geneva, World Health Organization, 2004.
21.
go back to reference Blandin S, Levashina E. Mosquito immune responses against malaria parasites. Curr Opin Immunol. 2004;16:16–20.PubMedCrossRef Blandin S, Levashina E. Mosquito immune responses against malaria parasites. Curr Opin Immunol. 2004;16:16–20.PubMedCrossRef
23.
go back to reference Gillies M, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ S Afr Inst Med Res. 1987;55:1–143. Gillies M, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ S Afr Inst Med Res. 1987;55:1–143.
24.
go back to reference Sinka M, Bangs M, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.PubMedPubMedCentralCrossRef Sinka M, Bangs M, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.PubMedPubMedCentralCrossRef
25.
go back to reference Noor A, Mutheu J, Tatem A, Hay S, Snow R. Insecticide-treated net coverage in Africa: mapping progress in 2000–07. Lancet. 2009;373:58–67.PubMedCrossRef Noor A, Mutheu J, Tatem A, Hay S, Snow R. Insecticide-treated net coverage in Africa: mapping progress in 2000–07. Lancet. 2009;373:58–67.PubMedCrossRef
27.
go back to reference Mabaso M, Sharp B, Lengeler C. Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health. 2004;9:846–56.PubMedCrossRef Mabaso M, Sharp B, Lengeler C. Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health. 2004;9:846–56.PubMedCrossRef
28.
go back to reference Bayoh M, Mathias D, Odiere M, Mutuku F, Kamau L, Gimnig J, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.PubMedCrossRef Bayoh M, Mathias D, Odiere M, Mutuku F, Kamau L, Gimnig J, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.PubMedCrossRef
29.
go back to reference Haridi A. Partial exophily of Anopheles gambiae species B in the Khashm Elgirba area in eastern Sudan. Bull World Health Organ. 1972;46:39–46.PubMedPubMedCentral Haridi A. Partial exophily of Anopheles gambiae species B in the Khashm Elgirba area in eastern Sudan. Bull World Health Organ. 1972;46:39–46.PubMedPubMedCentral
31.
go back to reference Elmahdi Z, Nugud A, Elhassan I. Estimation of malaria transmission intensity in Sennar state, central Sudan. East Mediterr Health J. 2012;18:951–6.PubMedCrossRef Elmahdi Z, Nugud A, Elhassan I. Estimation of malaria transmission intensity in Sennar state, central Sudan. East Mediterr Health J. 2012;18:951–6.PubMedCrossRef
32.
go back to reference Ageep T, Damiens D, Alsharif B, Ahmed A, Salih E, Ahmed F, et al. Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J. 2014;13:484.PubMedPubMedCentralCrossRef Ageep T, Damiens D, Alsharif B, Ahmed A, Salih E, Ahmed F, et al. Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J. 2014;13:484.PubMedPubMedCentralCrossRef
33.
go back to reference Makhawi A, Aboud M, El Raba’a F, Osman O, Elnaiem D. Identification of Anopheles species of the Funestus group and their role in malaria transmission in Sudan. J Appl Industry Sci. 2015;3:58–62. Makhawi A, Aboud M, El Raba’a F, Osman O, Elnaiem D. Identification of Anopheles species of the Funestus group and their role in malaria transmission in Sudan. J Appl Industry Sci. 2015;3:58–62.
34.
go back to reference el Gaddal A, Haridi A, Hassan F, Hussein H. Malaria control in the Gezira-Managil Irrigated Scheme of the Sudan. J Trop Med Hyg. 1985;88:153–9.PubMed el Gaddal A, Haridi A, Hassan F, Hussein H. Malaria control in the Gezira-Managil Irrigated Scheme of the Sudan. J Trop Med Hyg. 1985;88:153–9.PubMed
35.
go back to reference Lewis D. The anopheline mosquitoes of the Sudan. Bull Entomol Res. 1956;47:475–94.CrossRef Lewis D. The anopheline mosquitoes of the Sudan. Bull Entomol Res. 1956;47:475–94.CrossRef
36.
go back to reference Coppi A, Natarajan R, Pradel G, Bennett B, James E, Roggero M, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;208:341–56.PubMedPubMedCentralCrossRef Coppi A, Natarajan R, Pradel G, Bennett B, James E, Roggero M, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;208:341–56.PubMedPubMedCentralCrossRef
37.
go back to reference Kojin B, Adelman Z. The Sporozoite’s Journey Through the mosquito: A critical examination of host and parasite factors required for salivary gland invasion. Front Ecol Evol. 2019;7:284.CrossRef Kojin B, Adelman Z. The Sporozoite’s Journey Through the mosquito: A critical examination of host and parasite factors required for salivary gland invasion. Front Ecol Evol. 2019;7:284.CrossRef
38.
go back to reference Arnot D, Barnwell J, Tam J, Nussenzweig V, Nussenzweig R, Enea V. Circumsporozoite protein of Plasmodium vivax: gene cloning and characterization of the immunodominant epitope. Science. 1985;230:815–8.PubMedCrossRef Arnot D, Barnwell J, Tam J, Nussenzweig V, Nussenzweig R, Enea V. Circumsporozoite protein of Plasmodium vivax: gene cloning and characterization of the immunodominant epitope. Science. 1985;230:815–8.PubMedCrossRef
39.
go back to reference Cassiano G, StortiMelo L, Póvoa M, Galardo A, Rossit A, Machado R. Development of PCR-RFLP assay for the discrimination of Plasmodium species and variants of P.vivax (VK210, VK247 and P. vivax-like) in Anopheles mosquitoes. Acta Trop. 2011;118:118–22.PubMedCrossRef Cassiano G, StortiMelo L, Póvoa M, Galardo A, Rossit A, Machado R. Development of PCR-RFLP assay for the discrimination of Plasmodium species and variants of P.vivax (VK210, VK247 and P. vivax-like) in Anopheles mosquitoes. Acta Trop. 2011;118:118–22.PubMedCrossRef
40.
go back to reference de Almeida SE, Sucupira I, de Oliveira MB, Catete C, de Souza R, Dos Santos A, et al. VK210 and VK247 genotypes of Plasmodium vivax in anopheline mosquitoes from Brazilian Amazon. Sci Rep. 2019;9:9391.CrossRef de Almeida SE, Sucupira I, de Oliveira MB, Catete C, de Souza R, Dos Santos A, et al. VK210 and VK247 genotypes of Plasmodium vivax in anopheline mosquitoes from Brazilian Amazon. Sci Rep. 2019;9:9391.CrossRef
41.
go back to reference Gonzalez J, Hurtado S, Arevalo-Herrera M, Herrera S. Variants of the Plasmodium vivax circumsporozoite protein (VK210 and VK247) in Colombian isolates. Mem Instit Oswaldo Cruz. 2001;96:709–12.CrossRef Gonzalez J, Hurtado S, Arevalo-Herrera M, Herrera S. Variants of the Plasmodium vivax circumsporozoite protein (VK210 and VK247) in Colombian isolates. Mem Instit Oswaldo Cruz. 2001;96:709–12.CrossRef
43.
go back to reference Gillies M, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ S Afr Inst Med Res. 1968;54:1–343. Gillies M, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ S Afr Inst Med Res. 1968;54:1–343.
44.
go back to reference Livak K. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984;107:611–34.PubMedPubMedCentralCrossRef Livak K. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984;107:611–34.PubMedPubMedCentralCrossRef
45.
go back to reference Scott J, Brogdon W, Collins F. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef Scott J, Brogdon W, Collins F. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef
46.
go back to reference Imwong M, Pukrittayakamee S, Grüner A, Rénia L, Letourneur F, Looareesuwan S, et al. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005;4:20.PubMedPubMedCentralCrossRef Imwong M, Pukrittayakamee S, Grüner A, Rénia L, Letourneur F, Looareesuwan S, et al. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005;4:20.PubMedPubMedCentralCrossRef
47.
go back to reference Lopez A, Ortiz A, Coello J, Sosa-Ochoa W, Torres R, Banegas E, et al. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras. Malar J. 2012;11:391.PubMedPubMedCentralCrossRef Lopez A, Ortiz A, Coello J, Sosa-Ochoa W, Torres R, Banegas E, et al. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras. Malar J. 2012;11:391.PubMedPubMedCentralCrossRef
48.
go back to reference Collins F, Besansky N. Vector biology and the control of malaria in Africa. Science. 1994;264:1874–5.PubMedCrossRef Collins F, Besansky N. Vector biology and the control of malaria in Africa. Science. 1994;264:1874–5.PubMedCrossRef
49.
go back to reference Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.PubMedCrossRef Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.PubMedCrossRef
51.
52.
go back to reference Himeidan Y, Dukeen M, El-Rayah A. Adam I Anopheles arabiensis: abundance and insecticide resistance in an irrigated area of eastern Sudan. East Mediterr Health J. 2004;10:167–74.PubMedCrossRef Himeidan Y, Dukeen M, El-Rayah A. Adam I Anopheles arabiensis: abundance and insecticide resistance in an irrigated area of eastern Sudan. East Mediterr Health J. 2004;10:167–74.PubMedCrossRef
53.
go back to reference Lewis D. Observations on Anopheles gambiae and other mosquitoes at Wadi Halfa. Trans R Soc Trop Med Hyg. 1944;38:215–29.CrossRef Lewis D. Observations on Anopheles gambiae and other mosquitoes at Wadi Halfa. Trans R Soc Trop Med Hyg. 1944;38:215–29.CrossRef
54.
go back to reference El Sayed B, Arnot D, Mukhtar M, Baraka O, Dafalla A, Elnaiem D, et al. A study of the urban malaria transmission problem in Khartoum. Acta Trop. 2000;75:163–71.PubMedCrossRef El Sayed B, Arnot D, Mukhtar M, Baraka O, Dafalla A, Elnaiem D, et al. A study of the urban malaria transmission problem in Khartoum. Acta Trop. 2000;75:163–71.PubMedCrossRef
56.
go back to reference Joy D, Gonzalez-Ceron L, Carlton J, Gueye A, Fay M, McCutchan T, et al. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol. 2008;25:1245–52.PubMedPubMedCentralCrossRef Joy D, Gonzalez-Ceron L, Carlton J, Gueye A, Fay M, McCutchan T, et al. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol. 2008;25:1245–52.PubMedPubMedCentralCrossRef
57.
go back to reference González-Cerón L, Rodríguez M, Nettel-Cruz J, Hernández-Ávila J, Malo-García I, Santillán-Valenzuela F, et al. Plasmodium vivax CSP-Pvs25 variants from southern Mexico produce distinct patterns of infectivity for Anopheles albimanus versus An. pseudopunctipennis, in each case independent of geographical origin. Parasit Vectors. 2019;12:86.PubMedPubMedCentralCrossRef González-Cerón L, Rodríguez M, Nettel-Cruz J, Hernández-Ávila J, Malo-García I, Santillán-Valenzuela F, et al. Plasmodium vivax CSP-Pvs25 variants from southern Mexico produce distinct patterns of infectivity for Anopheles albimanus versus An. pseudopunctipennis, in each case independent of geographical origin. Parasit Vectors. 2019;12:86.PubMedPubMedCentralCrossRef
58.
go back to reference Rayis D, Ahmed M, Omer E, Adam I. Plasmodium vivax malaria among pregnant women in Eastern Sudan. Asian Pacific J Trop Dis. 2016;6:2021–3.CrossRef Rayis D, Ahmed M, Omer E, Adam I. Plasmodium vivax malaria among pregnant women in Eastern Sudan. Asian Pacific J Trop Dis. 2016;6:2021–3.CrossRef
59.
go back to reference Motshoge T, Ababio G, Aleksenko L, Read J, Peloewetse E, Loeto M, et al. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis. 2016;16:520.PubMedPubMedCentralCrossRef Motshoge T, Ababio G, Aleksenko L, Read J, Peloewetse E, Loeto M, et al. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis. 2016;16:520.PubMedPubMedCentralCrossRef
60.
go back to reference Björkman A. Asymptomatic low-density malaria infections: a parasite survival strategy? Lancet Infect Dis. 2018;18:485–6.PubMedCrossRef Björkman A. Asymptomatic low-density malaria infections: a parasite survival strategy? Lancet Infect Dis. 2018;18:485–6.PubMedCrossRef
61.
go back to reference El-Amin E, Elbashir M, Elamin O, Mukhtar Y, Abdo H, Abdul-Rahman I, et al. The underlying aetiologies of coma in febrile Sudanese children. Trans R Soc Trop Med Hyg. 2013;107:307–12.PubMedCrossRef El-Amin E, Elbashir M, Elamin O, Mukhtar Y, Abdo H, Abdul-Rahman I, et al. The underlying aetiologies of coma in febrile Sudanese children. Trans R Soc Trop Med Hyg. 2013;107:307–12.PubMedCrossRef
62.
go back to reference Lin J, Saunders D, Meshnick S. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol. 2014;30:183–90.PubMedPubMedCentralCrossRef Lin J, Saunders D, Meshnick S. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol. 2014;30:183–90.PubMedPubMedCentralCrossRef
63.
go back to reference Gnanguenon V, Govoetchan R, Agossa F, Ossè R, Oke-Agbo F, Azondekon R, et al. Transmission patterns of Plasmodium falciparum by Anopheles gambiae in Benin. Malar J. 2014;13:444.PubMedPubMedCentralCrossRef Gnanguenon V, Govoetchan R, Agossa F, Ossè R, Oke-Agbo F, Azondekon R, et al. Transmission patterns of Plasmodium falciparum by Anopheles gambiae in Benin. Malar J. 2014;13:444.PubMedPubMedCentralCrossRef
Metadata
Title
Molecular and morphological identification of suspected Plasmodium vivax vectors in Central and Eastern Sudan
Authors
Omnia Fathelrhman Abdelwhab
Arwa Elaagip
Musab M. Albsheer
Ayman Ahmed
Giacomo Maria Paganotti
Muzamil Mahdi Abdel Hamid
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03671-9

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine