Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Malaria | Research

Senna occidentalis (L.) Link root extract inhibits Plasmodium growth in vitro and in mice

Authors: Simeon Mogaka, Halkano Molu, Esther Kagasi, Kenneth Ogila, Rebeccah Waihenya, Faith Onditi, Hastings Ozwara

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Senna occidentalis (L.) Link has been used worldwide in traditional treatment of many diseases and conditions including snakebite. In Kenya, a decoction from the plant roots taken orally, is used as a cure for malaria. Several studies have demonstrated that extracts from the plant possess antiplasmodial activity, in vitro. However, the safety and curative potency of the plant root against established malaria infection is yet to be scientifically validated, in vivo. On the other hand, there are reports on variation in bioactivity of extracts obtained from this plant species, depending on the plant part used and place of origin among other factors. In this study, we demonstrated the antiplasmodial activity of Senna occidentalis roots extract in vitro, and in mice.

Methods

Methanol, ethyl acetate, chloroform, hexane and water extracts of S. occidentalis root were tested for in vitro antiplasmodial activity against Plasmodium falciparum, strain 3D7. Cytotoxicity of the most active solvent extracts was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the curative potency in Plasmodium berghei infected mice evaluated by Rane’s test.

Results

All of the solvent extracts tested in this study inhibited the propagation of P. falciparum, strain 3D7, in vitro, with polar extracts being more active than non-polar ones. Methanolic extracts had the highest activity (IC50 = 1.76) while hexane extract displayed the lowest activity (IC50 = 18.47). At the tested concentrations, methanolic and aqueous extracts exhibited high selectivity index against P. falciparum strain 3D7 (SI > 10) in the cytotoxicity assay. Further, the extracts significantly suppressed the propagation of P. berghei parasites (P < 0.05) in vivo and increased the survival time of the infected mice (P < 0.0001).

Conclusions

Senna occidentalis (L.) Link root extract inhibits the propagation of malaria parasites in vitro and in BALB/c mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baah MK, Mensah AY, Asante-Kwatia E, Amponsah IK, Forkuo AD, Harley BK, et al. In vivo antiplasmodial activity of different solvent extracts of Myrianthus libericus stem bark and its constituents in plasmodium berghei-infected mice. Evid Based Complement Alternat Med. 2020;2020. ID: 8703197. Baah MK, Mensah AY, Asante-Kwatia E, Amponsah IK, Forkuo AD, Harley BK, et al. In vivo antiplasmodial activity of different solvent extracts of Myrianthus libericus stem bark and its constituents in plasmodium berghei-infected mice. Evid Based Complement Alternat Med. 2020;2020. ID: 8703197.
2.
go back to reference Cimanga RK, Nsaka SL, Tshodi ME, Mbamu BM, Kikweta CM, Makila FB-M, et al. In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. J Ethnopharmacol. 2019;242:111736.PubMedCrossRef Cimanga RK, Nsaka SL, Tshodi ME, Mbamu BM, Kikweta CM, Makila FB-M, et al. In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. J Ethnopharmacol. 2019;242:111736.PubMedCrossRef
3.
go back to reference WHO. World malaria report 2022: World Health Organization; 2022. WHO. World malaria report 2022: World Health Organization; 2022.
4.
go back to reference Chaniad P, Techarang T, Phuwajaroanpong A, Punsawad C. Antimalarial activity and toxicological assessment of Betula alnoides extract against plasmodium berghei infections in mice. Evid Based Complement Alternat Med. 2019;2019. ID: 2324679. Chaniad P, Techarang T, Phuwajaroanpong A, Punsawad C. Antimalarial activity and toxicological assessment of Betula alnoides extract against plasmodium berghei infections in mice. Evid Based Complement Alternat Med. 2019;2019. ID: 2324679.
5.
go back to reference Ekasari W, Wahyuni TS, Arwaty H, Putri NT. Determination of effective dose of antimalarial from Cassia spectabilis leaf ethanol extract in plasmodium berghei-infected mice. Afr J Infect Diseases. 2018;12(1S):110–5. Ekasari W, Wahyuni TS, Arwaty H, Putri NT. Determination of effective dose of antimalarial from Cassia spectabilis leaf ethanol extract in plasmodium berghei-infected mice. Afr J Infect Diseases. 2018;12(1S):110–5.
6.
go back to reference Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J. 2014;13(1):1–20.CrossRef Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J. 2014;13(1):1–20.CrossRef
7.
go back to reference Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem bark show remarkable prophylactic activity in experimental plasmodium berghei–infected mice. Drug Target Insights. 2017;11:1177392817728725.PubMedPubMedCentralCrossRef Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem bark show remarkable prophylactic activity in experimental plasmodium berghei–infected mice. Drug Target Insights. 2017;11:1177392817728725.PubMedPubMedCentralCrossRef
8.
go back to reference Lozano-Cruz OA, Jiménez JV, Olivas-Martinez A, Ortiz-Brizuela E, Cárdenas-Fragoso JL, Azamar-Llamas D, et al. Adverse effects associated with the use of antimalarials during the COVID-19 pandemic in a tertiary care center in Mexico city. Front Pharmacol. 2021;12:668678.PubMedPubMedCentralCrossRef Lozano-Cruz OA, Jiménez JV, Olivas-Martinez A, Ortiz-Brizuela E, Cárdenas-Fragoso JL, Azamar-Llamas D, et al. Adverse effects associated with the use of antimalarials during the COVID-19 pandemic in a tertiary care center in Mexico city. Front Pharmacol. 2021;12:668678.PubMedPubMedCentralCrossRef
9.
go back to reference Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J. 2017;284(16):2579–91.PubMedCrossRef Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J. 2017;284(16):2579–91.PubMedCrossRef
10.
go back to reference Nondo RSO, Moshi MJ, Erasto P, Masimba PJ, Machumi F, Kidukuli AW, et al. Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria. BMC Complement Altern Med. 2017;17(1):1–8.CrossRef Nondo RSO, Moshi MJ, Erasto P, Masimba PJ, Machumi F, Kidukuli AW, et al. Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria. BMC Complement Altern Med. 2017;17(1):1–8.CrossRef
11.
go back to reference Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant plasmodium falciparum malaria. Nature. 2014;505(7481):50–5.PubMedCrossRef Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant plasmodium falciparum malaria. Nature. 2014;505(7481):50–5.PubMedCrossRef
12.
go back to reference Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018;17(1):1–10.CrossRef Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018;17(1):1–10.CrossRef
13.
go back to reference Sadiq MB, Tharaphan P, Chotivanich K, Tarning J, Anal AK. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement Altern Med. 2017;17(1):1–8.CrossRef Sadiq MB, Tharaphan P, Chotivanich K, Tarning J, Anal AK. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement Altern Med. 2017;17(1):1–8.CrossRef
14.
go back to reference WHO. World malaria report 2021: Tracking progress against malaria. 2021. WHO. World malaria report 2021: Tracking progress against malaria. 2021.
15.
go back to reference Berthi W, González A, Rios A, Blair S, Cogollo Á, Pabón A. Anti-plasmodial effect of plant extracts from Picrolemma huberi and Picramnia latifolia. Malar J. 2018;17(1):1–12.CrossRef Berthi W, González A, Rios A, Blair S, Cogollo Á, Pabón A. Anti-plasmodial effect of plant extracts from Picrolemma huberi and Picramnia latifolia. Malar J. 2018;17(1):1–12.CrossRef
16.
go back to reference Musila FM. In vivo antimalarial activity, toxicity and phytochemical screening of aqueous and organic extracts of selected antimalarial plants in Msambweni district. Kenya: University of Nairobi; 2012. Musila FM. In vivo antimalarial activity, toxicity and phytochemical screening of aqueous and organic extracts of selected antimalarial plants in Msambweni district. Kenya: University of Nairobi; 2012.
17.
go back to reference Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10(1):1–12. Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10(1):1–12.
18.
go back to reference Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Kumar PM, et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and plasmodium falciparum. Parasitol Res. 2015;114(10):3657–64.PubMedCrossRef Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Kumar PM, et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and plasmodium falciparum. Parasitol Res. 2015;114(10):3657–64.PubMedCrossRef
19.
go back to reference Al-Snafi AE. The therapeutic importance of Cassia occidentalis-an overview. Ind J Pharmaceutical Sci Res. 2015;5(3):158–71. Al-Snafi AE. The therapeutic importance of Cassia occidentalis-an overview. Ind J Pharmaceutical Sci Res. 2015;5(3):158–71.
20.
go back to reference Veerachari U, Bopaiah A. Phytochemical investigation of the ethanol, methanol and ethyl acetate leaf extracts of six Cassia species. Int J Pharm Bio Sci. 2012;3(2):260–70. Veerachari U, Bopaiah A. Phytochemical investigation of the ethanol, methanol and ethyl acetate leaf extracts of six Cassia species. Int J Pharm Bio Sci. 2012;3(2):260–70.
21.
go back to reference Yadav J, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia. 2010;81(4):223–30.PubMedCrossRef Yadav J, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia. 2010;81(4):223–30.PubMedCrossRef
22.
go back to reference Ali M, Ansari S, Ahmad S, Sanobar S, Hussain A, Khan SA, et al. Phytochemical and Pharmacological Approaches of Traditional Alternate Cassia occidentalis L. Plant and Human Health, Volume 3: Springer; 2019. p. 321–41. Ali M, Ansari S, Ahmad S, Sanobar S, Hussain A, Khan SA, et al. Phytochemical and Pharmacological Approaches of Traditional Alternate Cassia occidentalis L. Plant and Human Health, Volume 3: Springer; 2019. p. 321–41.
23.
go back to reference Silva MG, Aragão TP, Vasconcelos CF, Ferreira PA, Andrade BA, Costa IM, et al. Acute and subacute toxicity of Cassia occidentalis L. stem and leaf in Wistar rats. J Ethnopharmacol. 2011;136(2):341–6.PubMedCrossRef Silva MG, Aragão TP, Vasconcelos CF, Ferreira PA, Andrade BA, Costa IM, et al. Acute and subacute toxicity of Cassia occidentalis L. stem and leaf in Wistar rats. J Ethnopharmacol. 2011;136(2):341–6.PubMedCrossRef
24.
go back to reference Singh VV, Jain J, Mishra AK. Determination of antipyretic and antioxidant activity of Cassia occidentalis Linn methanolic seed extract. Pharmacognosy J. 2017;9(6):913–6. Singh VV, Jain J, Mishra AK. Determination of antipyretic and antioxidant activity of Cassia occidentalis Linn methanolic seed extract. Pharmacognosy J. 2017;9(6):913–6.
25.
go back to reference Vijayalakshmi S, Ranjitha J, Devi Rajeswari V, Bhagiyalakshmi M. Pharmacological profile of Cassia occidentalis L–A review. Int J Pharm Pharm Sci. 2013;5(3):29–33. Vijayalakshmi S, Ranjitha J, Devi Rajeswari V, Bhagiyalakshmi M. Pharmacological profile of Cassia occidentalis L–A review. Int J Pharm Pharm Sci. 2013;5(3):29–33.
26.
go back to reference Muthaura C, Keriko J, Derese S, Yenesew A, Rukunga G. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp Parasitol. 2011;127(3):609–26.PubMedCrossRef Muthaura C, Keriko J, Derese S, Yenesew A, Rukunga G. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp Parasitol. 2011;127(3):609–26.PubMedCrossRef
27.
go back to reference Muthaura C, Keriko J, Mutai C, Yenesew A, Gathirwa J, Irungu B, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan coast. J Ethnopharmacol. 2015;170:148–57.PubMedCrossRef Muthaura C, Keriko J, Mutai C, Yenesew A, Gathirwa J, Irungu B, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan coast. J Ethnopharmacol. 2015;170:148–57.PubMedCrossRef
28.
go back to reference Nguta J, Mbaria J, Gakuya D, Gathumbi P, Kiama S. Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol. 2010;128(2):424–32.PubMedCrossRef Nguta J, Mbaria J, Gakuya D, Gathumbi P, Kiama S. Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol. 2010;128(2):424–32.PubMedCrossRef
29.
go back to reference El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (lam.) Exell. J Ethnopharmacol. 1999;64(3):227–33.PubMedCrossRef El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (lam.) Exell. J Ethnopharmacol. 1999;64(3):227–33.PubMedCrossRef
30.
go back to reference Tona L, Cimanga R, Mesia K, Musuamba C, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol. 2004;93(1):27–32.PubMedCrossRef Tona L, Cimanga R, Mesia K, Musuamba C, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol. 2004;93(1):27–32.PubMedCrossRef
31.
go back to reference Daskum AM, Godly C, Qadeer MA, Ling LY. Effect of Senna occidentalis (Fabaceae) leaves extract on the formation of β-hematin and evaluation of in vitro antimalarial activity. Int J Herb Med. 2019;7(3):46–51. Daskum AM, Godly C, Qadeer MA, Ling LY. Effect of Senna occidentalis (Fabaceae) leaves extract on the formation of β-hematin and evaluation of in vitro antimalarial activity. Int J Herb Med. 2019;7(3):46–51.
32.
go back to reference Garg V, Dhar VJ, Sharma A, Dutt R. Facts about standardization of herbal medicine: a review. Zhong Xi Yi Jie He Xue Bao. 2012;10(10):1077–83.PubMedCrossRef Garg V, Dhar VJ, Sharma A, Dutt R. Facts about standardization of herbal medicine: a review. Zhong Xi Yi Jie He Xue Bao. 2012;10(10):1077–83.PubMedCrossRef
33.
go back to reference Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments–an introduction. Malar J. 2011;10(1):1–7.CrossRef Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments–an introduction. Malar J. 2011;10(1):1–7.CrossRef
34.
go back to reference Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef Sinha S, Sarma P, Sehgal R, Medhi B. Development in assay methods for in vitro antimalarial drug efficacy testing: a systematic review. Front Pharmacol. 2017;8:754.PubMedPubMedCentralCrossRef
35.
go back to reference Wells TN. Natural products as starting points for future anti-malarial therapies: going back to our roots? Malar J. 2011;10(1):1–12. Wells TN. Natural products as starting points for future anti-malarial therapies: going back to our roots? Malar J. 2011;10(1):1–12.
36.
go back to reference Woodrow CJ, Dahlström S, Cooksey R, Flegg JA, Le Nagard H, Mentré F, et al. High-throughput analysis of antimalarial susceptibility data by the WorldWide antimalarial resistance network (WWARN) in vitro analysis and reporting tool. Antimicrob Agents Chemother. 2013;57(7):3121–30.PubMedPubMedCentralCrossRef Woodrow CJ, Dahlström S, Cooksey R, Flegg JA, Le Nagard H, Mentré F, et al. High-throughput analysis of antimalarial susceptibility data by the WorldWide antimalarial resistance network (WWARN) in vitro analysis and reporting tool. Antimicrob Agents Chemother. 2013;57(7):3121–30.PubMedPubMedCentralCrossRef
37.
go back to reference WHO. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants: World Health Organization; 2003. WHO. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants: World Health Organization; 2003.
38.
go back to reference Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, et al. In vivo antiplasmodial activity of two sahelian plant extracts on plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;2018:6859632.PubMedPubMedCentralCrossRef Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, et al. In vivo antiplasmodial activity of two sahelian plant extracts on plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;2018:6859632.PubMedPubMedCentralCrossRef
39.
go back to reference Okokon JE, Antia BS, Mohanakrishnan D, Sahal D. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays. Pharm Biol. 2017;55(1):1394–400.PubMedPubMedCentralCrossRef Okokon JE, Antia BS, Mohanakrishnan D, Sahal D. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays. Pharm Biol. 2017;55(1):1394–400.PubMedPubMedCentralCrossRef
40.
go back to reference Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci World J. 2017;2017:5873648.CrossRef Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci World J. 2017;2017:5873648.CrossRef
41.
go back to reference Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5.PubMedCrossRef Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5.PubMedCrossRef
42.
go back to reference Bagavan A, Rahuman AA, Kaushik NK, Sahal D. In vitro antimalarial activity of medicinal plant extracts against plasmodium falciparum. Parasitol Res. 2011;108(1):15–22.PubMedCrossRef Bagavan A, Rahuman AA, Kaushik NK, Sahal D. In vitro antimalarial activity of medicinal plant extracts against plasmodium falciparum. Parasitol Res. 2011;108(1):15–22.PubMedCrossRef
43.
go back to reference Tepongning RN, Lucantoni L, Nasuti CC, Dori GU, Yerbanga SR, Lupidi G, et al. Potential of a Khaya ivorensis–Alstonia boonei extract combination as antimalarial prophylactic remedy. J Ethnopharmacol. 2011;137(1):743–51.PubMedCrossRef Tepongning RN, Lucantoni L, Nasuti CC, Dori GU, Yerbanga SR, Lupidi G, et al. Potential of a Khaya ivorensis–Alstonia boonei extract combination as antimalarial prophylactic remedy. J Ethnopharmacol. 2011;137(1):743–51.PubMedCrossRef
44.
go back to reference Lima RB, e Silva LFR, Melo MR, Costa JS, Picanço NS, Lima ES, et al. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malar J. 2015;14(1):1–14.CrossRef Lima RB, e Silva LFR, Melo MR, Costa JS, Picanço NS, Lima ES, et al. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malar J. 2015;14(1):1–14.CrossRef
45.
go back to reference Camara A, Haddad M, Reybier K, Traoré MS, Baldé MA, Royo J, et al. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J. 2019;18(1):1–15.CrossRef Camara A, Haddad M, Reybier K, Traoré MS, Baldé MA, Royo J, et al. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J. 2019;18(1):1–15.CrossRef
46.
go back to reference Tchatat Tali MB, Jiatsa Mbouna CD, Yamthe Tchokouaha LR, Tsouh Fokou PV, Tsakem Nangap JM, Keumoe R, et al. In vivo antiplasmodial activity of Terminalia mantaly stem bark aqueous extract in mice infected by plasmodium berghei. J Parasitol Res. 2020;2020:4580526.PubMedPubMedCentralCrossRef Tchatat Tali MB, Jiatsa Mbouna CD, Yamthe Tchokouaha LR, Tsouh Fokou PV, Tsakem Nangap JM, Keumoe R, et al. In vivo antiplasmodial activity of Terminalia mantaly stem bark aqueous extract in mice infected by plasmodium berghei. J Parasitol Res. 2020;2020:4580526.PubMedPubMedCentralCrossRef
47.
go back to reference Kweyamba PA, Zofou D, Efange N, Assob J-CN, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J. 2019;18(1):1–6.CrossRef Kweyamba PA, Zofou D, Efange N, Assob J-CN, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J. 2019;18(1):1–6.CrossRef
48.
go back to reference Waiganjo B, Moriasi G, Onyancha J, Elias N, Muregi F. Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu county, Kenya. J Parasitol Res. 2020;2020:8871375.PubMedPubMedCentralCrossRef Waiganjo B, Moriasi G, Onyancha J, Elias N, Muregi F. Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu county, Kenya. J Parasitol Res. 2020;2020:8871375.PubMedPubMedCentralCrossRef
49.
go back to reference Valdés AF-C, Martínez JM, Lizama RS, Gaitén YG, Rodríguez DA, Payrol JA. In vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Rev Inst Med Trop Sao Paulo. 2010;52:197–201.PubMedCrossRef Valdés AF-C, Martínez JM, Lizama RS, Gaitén YG, Rodríguez DA, Payrol JA. In vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Rev Inst Med Trop Sao Paulo. 2010;52:197–201.PubMedCrossRef
50.
go back to reference Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite plasmodium berghei. Nat Protoc. 2006;1(1):346–56.PubMedCrossRef Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite plasmodium berghei. Nat Protoc. 2006;1(1):346–56.PubMedCrossRef
51.
go back to reference Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8(2):e1002401.PubMedPubMedCentralCrossRef Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8(2):e1002401.PubMedPubMedCentralCrossRef
52.
go back to reference Jambou R, El-Assaad F, Combes V, Grau GE. In vitro culture of plasmodium berghei-ANKA maintains infectivity of mouse erythrocytes inducing cerebral malaria. Malar J. 2011;10(1):1–5.CrossRef Jambou R, El-Assaad F, Combes V, Grau GE. In vitro culture of plasmodium berghei-ANKA maintains infectivity of mouse erythrocytes inducing cerebral malaria. Malar J. 2011;10(1):1–5.CrossRef
53.
go back to reference Atsbha GH, Balasubramanian R, Gebre AK. Antimalarial Effect of the Root of Silene macrosolen A. Rich (Caryophyllaceae) on Plasmodium-berghei-Infected Mice. Evid Based Complement Alternative Med. 2021;2021. ID 8833865. Atsbha GH, Balasubramanian R, Gebre AK. Antimalarial Effect of the Root of Silene macrosolen A. Rich (Caryophyllaceae) on Plasmodium-berghei-Infected Mice. Evid Based Complement Alternative Med. 2021;2021. ID 8833865.
54.
go back to reference Enechi OC, Amah CC, Okagu IU, Ononiwu CP, Azidiegwu VC, Ugwuoke EO, et al. Methanol extracts of Fagara zanthoxyloides leaves possess antimalarial effects and normalizes haematological and biochemical status of plasmodium berghei-passaged mice. Pharm Biol. 2019;57(1):577–85.PubMedPubMedCentralCrossRef Enechi OC, Amah CC, Okagu IU, Ononiwu CP, Azidiegwu VC, Ugwuoke EO, et al. Methanol extracts of Fagara zanthoxyloides leaves possess antimalarial effects and normalizes haematological and biochemical status of plasmodium berghei-passaged mice. Pharm Biol. 2019;57(1):577–85.PubMedPubMedCentralCrossRef
55.
go back to reference Heinrich M, Appendino G, Efferth T, Fürst R, Izzo AA, Kayser O, et al. Best practice in research–overcoming common challenges in phytopharmacological research. J Ethnopharmacol. 2020;246:112230.PubMedCrossRef Heinrich M, Appendino G, Efferth T, Fürst R, Izzo AA, Kayser O, et al. Best practice in research–overcoming common challenges in phytopharmacological research. J Ethnopharmacol. 2020;246:112230.PubMedCrossRef
56.
go back to reference Tona L, Mesia K, Ngimbi N, Chrimwami B, Okond'Ahoka CK, et al. In-vivo antimalarial activity of Cassia occidentalism Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol. 2001;95(1):47–57.PubMedCrossRef Tona L, Mesia K, Ngimbi N, Chrimwami B, Okond'Ahoka CK, et al. In-vivo antimalarial activity of Cassia occidentalism Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol. 2001;95(1):47–57.PubMedCrossRef
57.
go back to reference Dibessa TT, Engidawork E, Nedi T, Teklehaymanot T. Antimalarial activity of the aqueous extract of the latex of aloe pirottae Berger.(Aloaceae) against plasmodium berghei in mice. J Ethnopharmacol. 2020;255:112763.PubMedCrossRef Dibessa TT, Engidawork E, Nedi T, Teklehaymanot T. Antimalarial activity of the aqueous extract of the latex of aloe pirottae Berger.(Aloaceae) against plasmodium berghei in mice. J Ethnopharmacol. 2020;255:112763.PubMedCrossRef
58.
go back to reference Alehegn AA, Yesuf JS, Birru EM. Antimalarial activity of crude extract and solvent fractions of the leaves of Bersama abyssinica fresen.(Melianthaceae) against plasmodium berghei infection in Swiss albino mice. Evid Based Complement Alternat Med. 2020;2020. ID 9467359. Alehegn AA, Yesuf JS, Birru EM. Antimalarial activity of crude extract and solvent fractions of the leaves of Bersama abyssinica fresen.(Melianthaceae) against plasmodium berghei infection in Swiss albino mice. Evid Based Complement Alternat Med. 2020;2020. ID 9467359.
59.
go back to reference Njeru SN, Muema JM. In vitro cytotoxicity of Aspilia pluriseta Schweinf. Extract fractions. BMC Res Notes. 2021;14(1):1–4.CrossRef Njeru SN, Muema JM. In vitro cytotoxicity of Aspilia pluriseta Schweinf. Extract fractions. BMC Res Notes. 2021;14(1):1–4.CrossRef
60.
go back to reference Cromer D, Evans KJ, Schofield L, Davenport MP. Preferential invasion of reticulocytes during late-stage plasmodium berghei infection accounts for reduced circulating reticulocyte levels. Int J Parasitol. 2006;36(13):1389–97.PubMedCrossRef Cromer D, Evans KJ, Schofield L, Davenport MP. Preferential invasion of reticulocytes during late-stage plasmodium berghei infection accounts for reduced circulating reticulocyte levels. Int J Parasitol. 2006;36(13):1389–97.PubMedCrossRef
61.
go back to reference Thakre N, Fernandes P, Mueller A-K, Graw F. Examining the reticulocyte preference of two plasmodium berghei strains during blood-stage malaria infection. Front Microbiol. 2018;9:166.PubMedPubMedCentralCrossRef Thakre N, Fernandes P, Mueller A-K, Graw F. Examining the reticulocyte preference of two plasmodium berghei strains during blood-stage malaria infection. Front Microbiol. 2018;9:166.PubMedPubMedCentralCrossRef
62.
go back to reference Ceravolo IP, Aguiar AC, Adebayo JO, Krettli AU. Studies on activities and chemical characterization of medicinal plants in search for new Antimalarials: a ten year review on Ethnopharmacology. Front Pharmacol. 2021;12:734263.PubMedPubMedCentralCrossRef Ceravolo IP, Aguiar AC, Adebayo JO, Krettli AU. Studies on activities and chemical characterization of medicinal plants in search for new Antimalarials: a ten year review on Ethnopharmacology. Front Pharmacol. 2021;12:734263.PubMedPubMedCentralCrossRef
63.
go back to reference Habibi P, Shi Y, Fatima Grossi-de-Sa M, Khan I. Plants as sources of natural and recombinant Antimalaria agents. Mol Biotechnol. 2022;64:1–21.CrossRef Habibi P, Shi Y, Fatima Grossi-de-Sa M, Khan I. Plants as sources of natural and recombinant Antimalaria agents. Mol Biotechnol. 2022;64:1–21.CrossRef
64.
go back to reference Noronha M, Pawar V, Prajapati A, Subramanian R. A literature review on traditional herbal medicines for malaria. S Afr J Bot. 2020;128:292–303.CrossRef Noronha M, Pawar V, Prajapati A, Subramanian R. A literature review on traditional herbal medicines for malaria. S Afr J Bot. 2020;128:292–303.CrossRef
65.
go back to reference Kigen GK, Ronoh HK, Kipkore WK, Rotich JK. Current trends of traditional herbal medicine practice in Kenya: a review. Afr J Pharmacol Ther. 2013;2(1). Kigen GK, Ronoh HK, Kipkore WK, Rotich JK. Current trends of traditional herbal medicine practice in Kenya: a review. Afr J Pharmacol Ther. 2013;2(1).
66.
go back to reference Pan S-Y, Zhou S-F, Gao S-H, Yu Z-L, Zhang S-F, Tang M-K, et al. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375.PubMedPubMedCentralCrossRef Pan S-Y, Zhou S-F, Gao S-H, Yu Z-L, Zhang S-F, Tang M-K, et al. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375.PubMedPubMedCentralCrossRef
67.
68.
go back to reference Zahari A, Ablat A, Sivasothy Y, Mohamad J, Choudhary MI, Awang K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac J Trop Med. 2016;9(4):328–32.PubMedCrossRef Zahari A, Ablat A, Sivasothy Y, Mohamad J, Choudhary MI, Awang K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac J Trop Med. 2016;9(4):328–32.PubMedCrossRef
69.
71.
go back to reference Raz A. Plasmodium berghei infection in BALB/c mice model as an animal model for malaria disease research: Vaccine Design: Springer; 2022. p. 589–95. Raz A. Plasmodium berghei infection in BALB/c mice model as an animal model for malaria disease research: Vaccine Design: Springer; 2022. p. 589–95.
72.
go back to reference Andrews KA, Wesche D, McCarthy J, Möhrle JJ, Tarning J, Phillips L, et al. Model-informed drug development for malaria therapeutics. Annu Rev Pharmacol Toxicol. 2018;58:567–82.PubMedCrossRef Andrews KA, Wesche D, McCarthy J, Möhrle JJ, Tarning J, Phillips L, et al. Model-informed drug development for malaria therapeutics. Annu Rev Pharmacol Toxicol. 2018;58:567–82.PubMedCrossRef
73.
go back to reference McCarthy JS, Marquart L, Sekuloski S, Trenholme K, Elliott S, Griffin P, et al. Linking murine and human plasmodium falciparum challenge models in a translational path for antimalarial drug development. Antimicrob Agents Chemother. 2016;60(6):3669–75.PubMedPubMedCentralCrossRef McCarthy JS, Marquart L, Sekuloski S, Trenholme K, Elliott S, Griffin P, et al. Linking murine and human plasmodium falciparum challenge models in a translational path for antimalarial drug development. Antimicrob Agents Chemother. 2016;60(6):3669–75.PubMedPubMedCentralCrossRef
74.
go back to reference Kotepui M, Piwkham D, PhunPhuech B, Phiwklam N, Chupeerach C, Duangmano S. Effects of malaria parasite density on blood cell parameters. PLoS One. 2015;10(3):e0121057.PubMedPubMedCentralCrossRef Kotepui M, Piwkham D, PhunPhuech B, Phiwklam N, Chupeerach C, Duangmano S. Effects of malaria parasite density on blood cell parameters. PLoS One. 2015;10(3):e0121057.PubMedPubMedCentralCrossRef
75.
go back to reference Phillips A, Bassett P, Szeki S, Newman S, Pasvol G. Risk factors for severe disease in adults with falciparum malaria. Clin Infect Dis. 2009;48(7):871–8.PubMedCrossRef Phillips A, Bassett P, Szeki S, Newman S, Pasvol G. Risk factors for severe disease in adults with falciparum malaria. Clin Infect Dis. 2009;48(7):871–8.PubMedCrossRef
76.
go back to reference Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Amran AA, Mahmud R. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules. 2010;16(1):107–18.PubMedPubMedCentralCrossRef Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Amran AA, Mahmud R. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules. 2010;16(1):107–18.PubMedPubMedCentralCrossRef
77.
go back to reference Monti D, Vodopivec B, Basilico N, Olliaro P, Taramelli D. A novel endogenous antimalarial: Fe (II)-protoporphyrin IXα (heme) inhibits hematin polymerization to β-hematin (malaria pigment) and kills malaria parasites. Biochemistry. 1999;38(28):8858–63.PubMedCrossRef Monti D, Vodopivec B, Basilico N, Olliaro P, Taramelli D. A novel endogenous antimalarial: Fe (II)-protoporphyrin IXα (heme) inhibits hematin polymerization to β-hematin (malaria pigment) and kills malaria parasites. Biochemistry. 1999;38(28):8858–63.PubMedCrossRef
Metadata
Title
Senna occidentalis (L.) Link root extract inhibits Plasmodium growth in vitro and in mice
Authors
Simeon Mogaka
Halkano Molu
Esther Kagasi
Kenneth Ogila
Rebeccah Waihenya
Faith Onditi
Hastings Ozwara
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03854-8

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue