Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Malaria | Research article

Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand

Authors: Zoe Shih-Jung Liu, Jetsumon Sattabongkot, Michael White, Sadudee Chotirat, Chalermpon Kumpitak, Eizo Takashima, Matthias Harbers, Wai-Hong Tham, Julie Healer, Chetan E. Chitnis, Takafumi Tsuboi, Ivo Mueller, Rhea J. Longley

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions.

Methods

We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2–4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells.

Results

Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections.

Conclusions

Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001;64(1-2 Suppl):97–106.PubMedCrossRef Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001;64(1-2 Suppl):97–106.PubMedCrossRef
4.
go back to reference Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CSN, et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. Plos Med. 2015;12(10):e1001891.PubMedPubMedCentralCrossRef Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CSN, et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. Plos Med. 2015;12(10):e1001891.PubMedPubMedCentralCrossRef
5.
go back to reference Commons RJ, Simpson JA, Watson J, White NJ, Price RN. Estimating the proportion of Plasmodium vivax recurrences caused by relapse: a systematic review and meta-analysis. Am J Trop Med Hyg. 2020;103(3):1094–9.PubMedPubMedCentralCrossRef Commons RJ, Simpson JA, Watson J, White NJ, Price RN. Estimating the proportion of Plasmodium vivax recurrences caused by relapse: a systematic review and meta-analysis. Am J Trop Med Hyg. 2020;103(3):1094–9.PubMedPubMedCentralCrossRef
6.
go back to reference Hulden L, Hulden L. Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malaria J. 2011;10(1):90.CrossRef Hulden L, Hulden L. Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malaria J. 2011;10(1):90.CrossRef
7.
go back to reference White N. Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria J. 2011;10(1):297.CrossRef White N. Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria J. 2011;10(1):297.CrossRef
8.
go back to reference Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, et al. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95(6_Suppl):4–14.PubMedPubMedCentralCrossRef Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, et al. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95(6_Suppl):4–14.PubMedPubMedCentralCrossRef
9.
go back to reference Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-Larp C, Chu CS, et al. Tafenoquine versus Primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380(3):229–41.PubMedPubMedCentralCrossRef Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-Larp C, Chu CS, et al. Tafenoquine versus Primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380(3):229–41.PubMedPubMedCentralCrossRef
10.
go back to reference Baird JK, Rieckmann KHJT. Can primaquine therapy for vivax malaria be improved? Trends Parasitol. 2003;19(3):115–20.PubMedCrossRef Baird JK, Rieckmann KHJT. Can primaquine therapy for vivax malaria be improved? Trends Parasitol. 2003;19(3):115–20.PubMedCrossRef
11.
go back to reference Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. 2013;81:133–201 Elsevier.PubMedCrossRef Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. 2013;81:133–201 Elsevier.PubMedCrossRef
12.
go back to reference Kondrashin A, Baranova AM, Ashley EA, Recht J, White NJ, Sergiev VP. Mass primaquine treatment to eliminate vivax malaria: lessons from the past. Malaria J. 2014;13(1):51.CrossRef Kondrashin A, Baranova AM, Ashley EA, Recht J, White NJ, Sergiev VP. Mass primaquine treatment to eliminate vivax malaria: lessons from the past. Malaria J. 2014;13(1):51.CrossRef
13.
go back to reference Nguitragool W, Mueller I, Kumpitak C, Saeseu T, Bantuchai S, Yorsaeng R, et al. Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand. Parasit Vectors. 2017;10(1):512.PubMedPubMedCentralCrossRef Nguitragool W, Mueller I, Kumpitak C, Saeseu T, Bantuchai S, Yorsaeng R, et al. Very high carriage of gametocytes in asymptomatic low-density Plasmodium falciparum and P. vivax infections in western Thailand. Parasit Vectors. 2017;10(1):512.PubMedPubMedCentralCrossRef
14.
go back to reference Hutagalung JJTLGH. Prevalence of asymptomatic submicroscopic malaria in eastern Indonesia: a cross sectional survey and spatial analysis. Lancet Glob Health. 2017;5:S13.CrossRef Hutagalung JJTLGH. Prevalence of asymptomatic submicroscopic malaria in eastern Indonesia: a cross sectional survey and spatial analysis. Lancet Glob Health. 2017;5:S13.CrossRef
15.
go back to reference Nguyen T-N, von Seidlein L, Nguyen T-V, Truong P-N, Do Hung S, Pham H-T, et al. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: an open cohort study. Lancet Infect Dis. 2018;18(5):565–72.PubMedPubMedCentralCrossRef Nguyen T-N, von Seidlein L, Nguyen T-V, Truong P-N, Do Hung S, Pham H-T, et al. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: an open cohort study. Lancet Infect Dis. 2018;18(5):565–72.PubMedPubMedCentralCrossRef
16.
go back to reference Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PA, Fricot A, et al. Hidden biomass of intact malaria parasites in the human spleen. N Engl J Med. 2021;384(21):2067–9.PubMedCrossRef Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PA, Fricot A, et al. Hidden biomass of intact malaria parasites in the human spleen. N Engl J Med. 2021;384(21):2067–9.PubMedCrossRef
17.
go back to reference Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PA, Fricot A, et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. Plos Med. 2021;18(5):e1003632.PubMedPubMedCentralCrossRef Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PA, Fricot A, et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. Plos Med. 2021;18(5):e1003632.PubMedPubMedCentralCrossRef
18.
go back to reference Brito MAM, Baro B, Raiol TC. Ayllon-Hermida A, Safe IP, Deroost K, et al. Morphological and transcriptional changes in human bone marrow during natural Plasmodium vivax malaria infections. J Infect Dis. 2020. Brito MAM, Baro B, Raiol TC. Ayllon-Hermida A, Safe IP, Deroost K, et al. Morphological and transcriptional changes in human bone marrow during natural Plasmodium vivax malaria infections. J Infect Dis. 2020.
19.
go back to reference Obaldia N 3rd, Meibalan E, Sa JM, Ma S, Clark MA, Mejia P, et al. Bone marrow is a major parasite reservoir in Plasmodium vivax Infection. mBio. 2018;9(3):e00625–18. Obaldia N 3rd, Meibalan E, Sa JM, Ma S, Clark MA, Mejia P, et al. Bone marrow is a major parasite reservoir in Plasmodium vivax Infection. mBio. 2018;9(3):e00625–18.
20.
go back to reference Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: a novel approach to accelerate towards elimination. Parasitol Int. 2021;87:102492.PubMedCrossRef Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: a novel approach to accelerate towards elimination. Parasitol Int. 2021;87:102492.PubMedCrossRef
22.
go back to reference Doolan DL, Dobaño C, Baird JK. Acquired immunity to malaria. ClinMicrobiol Rev. 2009;22(1):13–36. Doolan DL, Dobaño C, Baird JK. Acquired immunity to malaria. ClinMicrobiol Rev. 2009;22(1):13–36.
23.
go back to reference Fowkes FJ, Boeuf P, Beeson JG. Immunity to malaria in an era of declining malaria transmission. Parasitology. 2016;143(2):139–53.PubMedCrossRef Fowkes FJ, Boeuf P, Beeson JG. Immunity to malaria in an era of declining malaria transmission. Parasitology. 2016;143(2):139–53.PubMedCrossRef
24.
go back to reference Pinkevych M, Petravic J, Chelimo K, Kazura JW, Moormann AM, Davenport MP. The dynamics of naturally acquired immunity to Plasmodium falciparum infection. Plos Comput Biol. 2012;8(10):e1002729.PubMedPubMedCentralCrossRef Pinkevych M, Petravic J, Chelimo K, Kazura JW, Moormann AM, Davenport MP. The dynamics of naturally acquired immunity to Plasmodium falciparum infection. Plos Comput Biol. 2012;8(10):e1002729.PubMedPubMedCentralCrossRef
25.
go back to reference Longley RJ, Sattabongkot J, Mueller I. Insights into the naturally acquired immune response to Plasmodium vivax malaria. Parasitology. 2016;143(2):154–70.PubMedCrossRef Longley RJ, Sattabongkot J, Mueller I. Insights into the naturally acquired immune response to Plasmodium vivax malaria. Parasitology. 2016;143(2):154–70.PubMedCrossRef
26.
go back to reference Longley RJ, White MT, Takashima E, Morita M, Kanoi BN, Li Wai Suen CSN, et al. Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. Plos Negl Trop Dis. 2017;11(9):e0005888.PubMedPubMedCentralCrossRef Longley RJ, White MT, Takashima E, Morita M, Kanoi BN, Li Wai Suen CSN, et al. Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. Plos Negl Trop Dis. 2017;11(9):e0005888.PubMedPubMedCentralCrossRef
27.
go back to reference Longley RJ, Sripoorote P, Chobson P, Saeseu T, Sukasem C, Phuanukoonnon S, et al. High efficacy of primaquine treatment for plasmodium vivax in Western Thailand. Am J Trop Med Hyg. 2016;95(5):1086–9.PubMedPubMedCentralCrossRef Longley RJ, Sripoorote P, Chobson P, Saeseu T, Sukasem C, Phuanukoonnon S, et al. High efficacy of primaquine treatment for plasmodium vivax in Western Thailand. Am J Trop Med Hyg. 2016;95(5):1086–9.PubMedPubMedCentralCrossRef
28.
go back to reference Morais CG, Soares IS, Carvalho LH, Fontes CJ, Krettli AU, Braga EMJTA, et al. Antibodies to Plasmodium vivax apical membrane antigen 1: persistence and correlation with malaria transmission intensity. Am J Trop Med Hyg. 2006;75(4):582–7.PubMedCrossRef Morais CG, Soares IS, Carvalho LH, Fontes CJ, Krettli AU, Braga EMJTA, et al. Antibodies to Plasmodium vivax apical membrane antigen 1: persistence and correlation with malaria transmission intensity. Am J Trop Med Hyg. 2006;75(4):582–7.PubMedCrossRef
29.
go back to reference Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 2010;6(2):e1000770.PubMedPubMedCentralCrossRef Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 2010;6(2):e1000770.PubMedPubMedCentralCrossRef
30.
go back to reference Franca CT, He WQ, Gruszczyk J, Lim NT, Lin E, Kiniboro B, et al. Plasmodium vivax reticulocyte binding proteins are key targets of naturally acquired immunity in young Papua New Guinean children. Plos Negl Trop Dis. 2016;10(9):e0005014.PubMedPubMedCentralCrossRef Franca CT, He WQ, Gruszczyk J, Lim NT, Lin E, Kiniboro B, et al. Plasmodium vivax reticulocyte binding proteins are key targets of naturally acquired immunity in young Papua New Guinean children. Plos Negl Trop Dis. 2016;10(9):e0005014.PubMedPubMedCentralCrossRef
31.
go back to reference He WQ, Shakri AR, Bhardwaj R, França CT, Stanisic DI, Healer J, et al. Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria. Plos Negl Trop Dis. 2019;13(2):e0006987.PubMedPubMedCentralCrossRef He WQ, Shakri AR, Bhardwaj R, França CT, Stanisic DI, Healer J, et al. Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria. Plos Negl Trop Dis. 2019;13(2):e0006987.PubMedPubMedCentralCrossRef
32.
go back to reference Nguitragool W, Karl S, White M, Koepfli C, Felger I, Singhasivanon P, et al. Highly heterogeneous residual malaria risk in western Thailand. Int J Parasitol. 2019;49(6):455–62. Nguitragool W, Karl S, White M, Koepfli C, Felger I, Singhasivanon P, et al. Highly heterogeneous residual malaria risk in western Thailand. Int J Parasitol. 2019;49(6):455–62.
33.
go back to reference Vatakis D, McMillan M. The signal peptide sequence impacts the immune response elicited by a DNA epitope vaccine. Clin Vaccine Immunol. 2011;18(10):1776–80.PubMedPubMedCentralCrossRef Vatakis D, McMillan M. The signal peptide sequence impacts the immune response elicited by a DNA epitope vaccine. Clin Vaccine Immunol. 2011;18(10):1776–80.PubMedPubMedCentralCrossRef
35.
go back to reference Haase S, de Koning-Ward TF. New insights into protein export in malaria parasites. Cell Microbiol. 2010;12(5):580–7.PubMedCrossRef Haase S, de Koning-Ward TF. New insights into protein export in malaria parasites. Cell Microbiol. 2010;12(5):580–7.PubMedCrossRef
36.
go back to reference Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estraño C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science. 2004;306(5703):1934–7.PubMedCrossRef Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estraño C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science. 2004;306(5703):1934–7.PubMedCrossRef
37.
go back to reference Kovjazin R, Volovitz I, Daon Y, Vider-Shalit T, Azran R, Tsaban L, et al. Signal peptides and trans-membrane regions are broadly immunogenic and have high CD8+ T cell epitope densities: Implications for vaccine development. Mol Immunol. 2011;48(8):1009–18.PubMedPubMedCentralCrossRef Kovjazin R, Volovitz I, Daon Y, Vider-Shalit T, Azran R, Tsaban L, et al. Signal peptides and trans-membrane regions are broadly immunogenic and have high CD8+ T cell epitope densities: Implications for vaccine development. Mol Immunol. 2011;48(8):1009–18.PubMedPubMedCentralCrossRef
38.
go back to reference Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med. 2000;192(11):1563–76.PubMedPubMedCentralCrossRef Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med. 2000;192(11):1563–76.PubMedPubMedCentralCrossRef
39.
go back to reference Cheng Y, Wang B, Lu F, Han JH, Ahmed MA, Han ET. Immunological characterization of Plasmodium vivax Pv32, a novel predicted GPI-anchored merozoite surface protein. Malar J. 2018;17(1):273.PubMedPubMedCentralCrossRef Cheng Y, Wang B, Lu F, Han JH, Ahmed MA, Han ET. Immunological characterization of Plasmodium vivax Pv32, a novel predicted GPI-anchored merozoite surface protein. Malar J. 2018;17(1):273.PubMedPubMedCentralCrossRef
40.
go back to reference Shi Q, Lynch MM, Romero M, Burns JM Jr. Enhanced protection against malaria by a chimeric merozoite surface protein vaccine. Infect Immun. 2007;75(3):1349–58.PubMedCrossRef Shi Q, Lynch MM, Romero M, Burns JM Jr. Enhanced protection against malaria by a chimeric merozoite surface protein vaccine. Infect Immun. 2007;75(3):1349–58.PubMedCrossRef
41.
go back to reference Balam S, Olugbile S, Servis C, Diakité M, D'Alessandro A, Frank G, et al. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J. 2014;13:510.PubMedPubMedCentralCrossRef Balam S, Olugbile S, Servis C, Diakité M, D'Alessandro A, Frank G, et al. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J. 2014;13:510.PubMedPubMedCentralCrossRef
42.
go back to reference de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, et al. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J. 2011;10:266.PubMedPubMedCentralCrossRef de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, et al. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J. 2011;10:266.PubMedPubMedCentralCrossRef
43.
go back to reference Toll-Riera M, Radó-Trilla N, Martys F, Albà MM. Role of low-complexity sequences in the formation of novel protein coding sequences. Mol Biol Evol. 2012;29(3):883–6.PubMedCrossRef Toll-Riera M, Radó-Trilla N, Martys F, Albà MM. Role of low-complexity sequences in the formation of novel protein coding sequences. Mol Biol Evol. 2012;29(3):883–6.PubMedCrossRef
44.
go back to reference Mendes TA, Lobo FP, Rodrigues TS, Rodrigues-Luiz GF. daRocha WD, Fujiwara RT, et al. Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa. Mol Biol Evol. 2013;30(4):951–63.PubMedCrossRef Mendes TA, Lobo FP, Rodrigues TS, Rodrigues-Luiz GF. daRocha WD, Fujiwara RT, et al. Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa. Mol Biol Evol. 2013;30(4):951–63.PubMedCrossRef
45.
46.
go back to reference Longley RJ, White MT, Takashima E, Brewster J, Morita M, Harbers M, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med. 2020;26(5):741–9.PubMedCrossRef Longley RJ, White MT, Takashima E, Brewster J, Morita M, Harbers M, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med. 2020;26(5):741–9.PubMedCrossRef
47.
go back to reference Hietanen J, Chim-Ong A, Chiramanewong T, Gruszczyk J, Roobsoong W, Tham W-H, et al. Gene models, expression repertoire, and immune response of Plasmodium vivax reticulocyte binding proteins. Infect Immun. 2016;84(3):677–85.PubMedCentralCrossRef Hietanen J, Chim-Ong A, Chiramanewong T, Gruszczyk J, Roobsoong W, Tham W-H, et al. Gene models, expression repertoire, and immune response of Plasmodium vivax reticulocyte binding proteins. Infect Immun. 2016;84(3):677–85.PubMedCentralCrossRef
48.
go back to reference França CT, White MT, He W-Q, Hostetler JB, Brewster J, Frato G, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. eLife. 2017;6:e28673.PubMedPubMedCentralCrossRef França CT, White MT, He W-Q, Hostetler JB, Brewster J, Frato G, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. eLife. 2017;6:e28673.PubMedPubMedCentralCrossRef
49.
go back to reference Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I, et al. Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009;77(9):4009–17.PubMedPubMedCentralCrossRef Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I, et al. Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009;77(9):4009–17.PubMedPubMedCentralCrossRef
50.
go back to reference Healer J, Thompson JK, Riglar DT, Wilson DW, Chiu Y-H, Miura K, et al. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. Plos One. 2013;8(9):e72504.PubMedPubMedCentralCrossRef Healer J, Thompson JK, Riglar DT, Wilson DW, Chiu Y-H, Miura K, et al. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. Plos One. 2013;8(9):e72504.PubMedPubMedCentralCrossRef
51.
go back to reference Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9(9):555–66.PubMedCrossRef Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9(9):555–66.PubMedCrossRef
52.
go back to reference Mazhari R, Brewster J, Fong R, Bourke C, Liu ZSJ, Takashima E, et al. A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). Plos One. 2020;15(12):e0238010.PubMedPubMedCentralCrossRef Mazhari R, Brewster J, Fong R, Bourke C, Liu ZSJ, Takashima E, et al. A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). Plos One. 2020;15(12):e0238010.PubMedPubMedCentralCrossRef
53.
go back to reference Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, et al. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 2003;31(1):212–5.PubMedPubMedCentralCrossRef Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, et al. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 2003;31(1):212–5.PubMedPubMedCentralCrossRef
54.
go back to reference Krogh A, Larsson B, Von Heijne G, Sonnhammer ELJJ. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.PubMedCrossRef Krogh A, Larsson B, Von Heijne G, Sonnhammer ELJJ. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.PubMedCrossRef
55.
go back to reference Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinform. 2008;9(1):392.CrossRef Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinform. 2008;9(1):392.CrossRef
56.
go back to reference Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2018;47(D1):D351–D60.PubMedCentralCrossRef Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2018;47(D1):D351–D60.PubMedCentralCrossRef
57.
go back to reference Wootton JCJC. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem. 1994;18(3):269–85.PubMedCrossRef Wootton JCJC. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem. 1994;18(3):269–85.PubMedCrossRef
58.
go back to reference Boyle MJ, Chan JA, Handayuni I, Reiling L, Feng G, Hilton A, et al. IgM in human immunity to Plasmodium falciparum malaria. Sci Adv. 2019;5(9):eaax4489.PubMedPubMedCentralCrossRef Boyle MJ, Chan JA, Handayuni I, Reiling L, Feng G, Hilton A, et al. IgM in human immunity to Plasmodium falciparum malaria. Sci Adv. 2019;5(9):eaax4489.PubMedPubMedCentralCrossRef
59.
go back to reference Rogier E, Nace D, Dimbu PR, Wakeman B, Pohl J, Beeson JG, et al. Framework for characterizing longitudinal antibody response in children after Plasmodium falciparum infection. Front Immunol. 2021;12:617951.PubMedPubMedCentralCrossRef Rogier E, Nace D, Dimbu PR, Wakeman B, Pohl J, Beeson JG, et al. Framework for characterizing longitudinal antibody response in children after Plasmodium falciparum infection. Front Immunol. 2021;12:617951.PubMedPubMedCentralCrossRef
60.
go back to reference Walker MR, Knudsen AS, Partey FD, Bassi MR, Frank AM, Castberg FC, et al. Acquisition and decay of IgM and IgG responses to merozoite antigens after Plasmodium falciparum malaria in Ghanaian children. Plos One. 2020;15(12):e0243943.PubMedPubMedCentralCrossRef Walker MR, Knudsen AS, Partey FD, Bassi MR, Frank AM, Castberg FC, et al. Acquisition and decay of IgM and IgG responses to merozoite antigens after Plasmodium falciparum malaria in Ghanaian children. Plos One. 2020;15(12):e0243943.PubMedPubMedCentralCrossRef
61.
go back to reference Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, et al. Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med. 2019;17(1):22.PubMedPubMedCentralCrossRef Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, et al. Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med. 2019;17(1):22.PubMedPubMedCentralCrossRef
62.
go back to reference White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, et al. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis. 2014;210(7):1115–22.PubMedCrossRef White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, et al. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis. 2014;210(7):1115–22.PubMedCrossRef
63.
go back to reference Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. Plos Negl Trop Dis. 2018;12(6):e0006457.PubMedPubMedCentralCrossRef Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. Plos Negl Trop Dis. 2018;12(6):e0006457.PubMedPubMedCentralCrossRef
64.
go back to reference Boddey JA, Moritz RL, Simpson RJ, Cowman AF. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic. 2009;10(3):285–99.PubMedPubMedCentralCrossRef Boddey JA, Moritz RL, Simpson RJ, Cowman AF. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic. 2009;10(3):285–99.PubMedPubMedCentralCrossRef
65.
go back to reference Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, et al. Insights into the immunological properties of intrinsically disordered malaria proteins using proteome scale predictions. Plos One. 2015;10(10):e0141729.PubMedPubMedCentralCrossRef Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, et al. Insights into the immunological properties of intrinsically disordered malaria proteins using proteome scale predictions. Plos One. 2015;10(10):e0141729.PubMedPubMedCentralCrossRef
66.
go back to reference Akpogheneta OJ, Duah NO, Tetteh KK, Dunyo S, Lanar DE, Pinder M, et al. Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infect Immun. 2008;76(4):1748–55.PubMedPubMedCentralCrossRef Akpogheneta OJ, Duah NO, Tetteh KK, Dunyo S, Lanar DE, Pinder M, et al. Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infect Immun. 2008;76(4):1748–55.PubMedPubMedCentralCrossRef
67.
go back to reference Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, et al. Binding of Plasmodium falciparum merozoite surface proteins DBLMSP and DBLMSP2 to human immunoglobulin M is conserved among broadly diverged sequence variants. J Biol Chem. 2016;291(27):14285–99.PubMedPubMedCentralCrossRef Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, et al. Binding of Plasmodium falciparum merozoite surface proteins DBLMSP and DBLMSP2 to human immunoglobulin M is conserved among broadly diverged sequence variants. J Biol Chem. 2016;291(27):14285–99.PubMedPubMedCentralCrossRef
68.
go back to reference Quintana MP, Ecklu-Mensah G, Tcherniuk SO, Ditlev SB, Oleinikov AV, Hviid L, et al. Comprehensive analysis of Fc-mediated IgM binding to the Plasmodium falciparum erythrocyte membrane protein 1 family in three parasite clones. Sci Rep. 2019;9(1):6050.PubMedPubMedCentralCrossRef Quintana MP, Ecklu-Mensah G, Tcherniuk SO, Ditlev SB, Oleinikov AV, Hviid L, et al. Comprehensive analysis of Fc-mediated IgM binding to the Plasmodium falciparum erythrocyte membrane protein 1 family in three parasite clones. Sci Rep. 2019;9(1):6050.PubMedPubMedCentralCrossRef
69.
go back to reference Changrob S, Han J-H, Ha K-S, Park WS, Hong S-H, Chootong P, et al. Immunogenicity of glycosylphosphatidylinositol-anchored micronemal antigen in natural Plasmodium vivax exposure. Malaria J. 2017;16(1):348.CrossRef Changrob S, Han J-H, Ha K-S, Park WS, Hong S-H, Chootong P, et al. Immunogenicity of glycosylphosphatidylinositol-anchored micronemal antigen in natural Plasmodium vivax exposure. Malaria J. 2017;16(1):348.CrossRef
70.
go back to reference Wang B, Lu F, Cheng Y, Chen J-H, Jeon H-Y, Ha K-S, et al. Immunoprofiling of the tryptophan-rich antigen family in Plasmodium vivax. Infect Immun. 2015;83(8):3083–95.PubMedPubMedCentralCrossRef Wang B, Lu F, Cheng Y, Chen J-H, Jeon H-Y, Ha K-S, et al. Immunoprofiling of the tryptophan-rich antigen family in Plasmodium vivax. Infect Immun. 2015;83(8):3083–95.PubMedPubMedCentralCrossRef
71.
go back to reference Morais CG, Soares IS, Carvalho LH, Fontes CJF, Krettli AU, Braga ÉM. IgG isotype to C-terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitol Res. 2005;95(6):420–6.PubMedCrossRef Morais CG, Soares IS, Carvalho LH, Fontes CJF, Krettli AU, Braga ÉM. IgG isotype to C-terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitol Res. 2005;95(6):420–6.PubMedCrossRef
72.
go back to reference Weaver R, Reiling L, Feng G, Drew DR, Mueller I, Siba PM, et al. The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep. 2016;6:33094.PubMedPubMedCentralCrossRef Weaver R, Reiling L, Feng G, Drew DR, Mueller I, Siba PM, et al. The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep. 2016;6:33094.PubMedPubMedCentralCrossRef
73.
go back to reference Saavedra-Langer R, Marapara J, Valle-Campos A, Durand S, Vásquez-Chasnamote ME, Silva H, et al. IgG subclass responses to excreted-secreted antigens of Plasmodium falciparum in a low-transmission malaria area of the Peruvian Amazon. Malaria J. 2018;17(1):328.CrossRef Saavedra-Langer R, Marapara J, Valle-Campos A, Durand S, Vásquez-Chasnamote ME, Silva H, et al. IgG subclass responses to excreted-secreted antigens of Plasmodium falciparum in a low-transmission malaria area of the Peruvian Amazon. Malaria J. 2018;17(1):328.CrossRef
74.
go back to reference Ferreira M, Kimura E, Katzin A, Santos-Neto L, Ferrari J, Villalobos J, et al. The IgG-subclass distribution of naturally acquired antibodies to Plasmodium falciparum, in relation to malaria exposure and severity. Ann Trop Med Parasitol. 1998;92(3):245–56.PubMedCrossRef Ferreira M, Kimura E, Katzin A, Santos-Neto L, Ferrari J, Villalobos J, et al. The IgG-subclass distribution of naturally acquired antibodies to Plasmodium falciparum, in relation to malaria exposure and severity. Ann Trop Med Parasitol. 1998;92(3):245–56.PubMedCrossRef
75.
go back to reference Tongren JE, Drakeley CJ, McDonald SL, Reyburn HG, Manjurano A, Nkya WM, et al. Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun. 2006;74(1):257–64.PubMedPubMedCentralCrossRef Tongren JE, Drakeley CJ, McDonald SL, Reyburn HG, Manjurano A, Nkya WM, et al. Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun. 2006;74(1):257–64.PubMedPubMedCentralCrossRef
76.
go back to reference Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, et al. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun. 2009;77(3):1165–74.PubMedPubMedCentralCrossRef Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, et al. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun. 2009;77(3):1165–74.PubMedPubMedCentralCrossRef
77.
go back to reference Ho F, Lortan JE, MaClennan IC, Khan M. Distinct short-lived and long-lived antibody-producing cell populations. Eur J Immunol. 1986;16(10):1297–301.PubMedCrossRef Ho F, Lortan JE, MaClennan IC, Khan M. Distinct short-lived and long-lived antibody-producing cell populations. Eur J Immunol. 1986;16(10):1297–301.PubMedCrossRef
78.
go back to reference Park JW, Moon SH, Yeom JS, Lim KJ, Sohn MJ, Jung WC, et al. Naturally acquired antibody responses to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in Korea. Clin Diagn Lab Immunol. 2001;8(1):14–20.PubMedPubMedCentralCrossRef Park JW, Moon SH, Yeom JS, Lim KJ, Sohn MJ, Jung WC, et al. Naturally acquired antibody responses to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in Korea. Clin Diagn Lab Immunol. 2001;8(1):14–20.PubMedPubMedCentralCrossRef
79.
go back to reference Skountzou I, Satyabhama L, Stavropoulou A, Ashraf Z, Esser ES, Vassilieva E, et al. Influenza virus-specific neutralizing IgM antibodies persist for a lifetime. Clin Vacc Immunol. 2014;21(11):1481–9.CrossRef Skountzou I, Satyabhama L, Stavropoulou A, Ashraf Z, Esser ES, Vassilieva E, et al. Influenza virus-specific neutralizing IgM antibodies persist for a lifetime. Clin Vacc Immunol. 2014;21(11):1481–9.CrossRef
80.
go back to reference Bohannon C, Powers R, Satyabhama L, Cui A, Tipton C, Michaeli M, et al. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat Commun. 2016;7:11826.PubMedPubMedCentralCrossRef Bohannon C, Powers R, Satyabhama L, Cui A, Tipton C, Michaeli M, et al. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat Commun. 2016;7:11826.PubMedPubMedCentralCrossRef
81.
go back to reference Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, et al. Immunization of malaria-preexposed volunteers with PfSPZ vaccine elicits long-lived IgM invasion-inhibitory and complement-fixing antibodies. J Infect Dis. 2018;217(10):1569–78.PubMedPubMedCentralCrossRef Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, et al. Immunization of malaria-preexposed volunteers with PfSPZ vaccine elicits long-lived IgM invasion-inhibitory and complement-fixing antibodies. J Infect Dis. 2018;217(10):1569–78.PubMedPubMedCentralCrossRef
82.
go back to reference Krishnamurty AT, Thouvenel CD, Portugal S, Keitany GJ, Kim KS, Holder A, et al. Somatically hypermutated Plasmodium-specific IgM(+) memory B Cells are rapid, plastic, early responders upon malaria rechallenge. Immunity. 2016;45(2):402–14.PubMedPubMedCentralCrossRef Krishnamurty AT, Thouvenel CD, Portugal S, Keitany GJ, Kim KS, Holder A, et al. Somatically hypermutated Plasmodium-specific IgM(+) memory B Cells are rapid, plastic, early responders upon malaria rechallenge. Immunity. 2016;45(2):402–14.PubMedPubMedCentralCrossRef
83.
go back to reference MacNeil A, Reed Z, Rollin PE. Serologic cross-reactivity of human IgM and IgG antibodies to five species of Ebola virus. Plos Negl Trop Dis. 2011;5(6):e1175.PubMedPubMedCentralCrossRef MacNeil A, Reed Z, Rollin PE. Serologic cross-reactivity of human IgM and IgG antibodies to five species of Ebola virus. Plos Negl Trop Dis. 2011;5(6):e1175.PubMedPubMedCentralCrossRef
84.
go back to reference Papa A, Karabaxoglou D, Kansouzidou AJJV. Acute West Nile virus neuroinvasive infections: Cross-reactivity with dengue virus and tick-borne encephalitis virus. J Med Virol. 2011;83(10):1861–5.PubMedCrossRef Papa A, Karabaxoglou D, Kansouzidou AJJV. Acute West Nile virus neuroinvasive infections: Cross-reactivity with dengue virus and tick-borne encephalitis virus. J Med Virol. 2011;83(10):1861–5.PubMedCrossRef
85.
go back to reference Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Davies DH, Jain A, et al. Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand-molecular and serological evidence. Malaria J. 2015;14(1):95.CrossRef Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Davies DH, Jain A, et al. Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand-molecular and serological evidence. Malaria J. 2015;14(1):95.CrossRef
86.
go back to reference Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Jain A, Taghavian O, et al. Common asymptomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular and serological studies: a challenge to malaria elimination. Malar J. 2016;15(1):333.PubMedPubMedCentralCrossRef Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Jain A, Taghavian O, et al. Common asymptomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular and serological studies: a challenge to malaria elimination. Malar J. 2016;15(1):333.PubMedPubMedCentralCrossRef
87.
go back to reference Longley RJ, França CT, White MT, Kumpitak C, Sa-angchai P, Gruszczyk J, et al. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malaria J. 2017;16(1):178.CrossRef Longley RJ, França CT, White MT, Kumpitak C, Sa-angchai P, Gruszczyk J, et al. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malaria J. 2017;16(1):178.CrossRef
88.
go back to reference McLean AR, Boel ME, McGready R, Ataide R, Drew D, Tsuboi T, et al. Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period. Sci Rep. 2016;6:32159.PubMedPubMedCentralCrossRef McLean AR, Boel ME, McGready R, Ataide R, Drew D, Tsuboi T, et al. Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period. Sci Rep. 2016;6:32159.PubMedPubMedCentralCrossRef
89.
go back to reference Min HMK, Changrob S, Soe PT, Han JH, Muh F, Lee S-K, et al. Immunogenicity of the Plasmodium vivax merozoite surface protein 1 paralog in the induction of naturally acquired antibody and memory B cell responses. Malaria J. 2017;16(1):354.CrossRef Min HMK, Changrob S, Soe PT, Han JH, Muh F, Lee S-K, et al. Immunogenicity of the Plasmodium vivax merozoite surface protein 1 paralog in the induction of naturally acquired antibody and memory B cell responses. Malaria J. 2017;16(1):354.CrossRef
90.
go back to reference Arévalo-Herrera M, Lopez-Perez M, Dotsey E, Jain A, Rubiano K, Felgner PL, et al. Antibody profiling in naïve and semi-immune individuals experimentally challenged with plasmodium vivax sporozoites. Plos Negl Trop Dis. 2016;10(3):e0004563.PubMedPubMedCentralCrossRef Arévalo-Herrera M, Lopez-Perez M, Dotsey E, Jain A, Rubiano K, Felgner PL, et al. Antibody profiling in naïve and semi-immune individuals experimentally challenged with plasmodium vivax sporozoites. Plos Negl Trop Dis. 2016;10(3):e0004563.PubMedPubMedCentralCrossRef
Metadata
Title
Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand
Authors
Zoe Shih-Jung Liu
Jetsumon Sattabongkot
Michael White
Sadudee Chotirat
Chalermpon Kumpitak
Eizo Takashima
Matthias Harbers
Wai-Hong Tham
Julie Healer
Chetan E. Chitnis
Takafumi Tsuboi
Ivo Mueller
Rhea J. Longley
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02281-9

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue