Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region

Authors: Ahmadali Enayati, Ahmad Ali Hanafi-Bojd, Mohammad Mehdi Sedaghat, Morteza Zaim, Janet Hemingway

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

While Iran is on the path to eliminating malaria, the disease with 4.9 million estimated cases and 9300 estimated deaths in 2018 remains a serious health problem in the World Health Organization (WHO) Eastern Mediterranean Region. Anopheles stephensi is the main malaria vector in Iran and its range extends from Iraq to western China. Recently, the vector invaded new territories in Sri Lanka and countries in the Horn of Africa. Insecticide resistance in An. stephensi is a potential issue in controlling the spread of this vector.

Methods

Data were collated from national and international databases, including PubMed, Google Scholar, Scopus, ScienceDirect, SID, and IranMedex using appropriate search terms.

Results

Indoor residual spaying (IRS) with DDT was piloted in Iran in 1945 and subsequently used in the malaria eradication programme. Resistance to DDT in An. stephensi was detected in Iran, Iraq, Pakistan, and Saudi Arabia in the late 1960s. Malathion was used for malaria control in Iran in 1967, then propoxur in 1978, followed by pirimiphos-methyl from 1992 to 1994. The pyrethroid insecticide lambda-cyhalothrin was used from 1994 to 2003 followed by deltamethrin IRS and long-lasting insecticidal nets (LLINs). Some of these insecticides with the same sequence were used in other malaria-endemic countries of the region. Pyrethroid resistance was detected in An. stephensi in Afghanistan in 2010, in 2011 in India and in 2012 in Iran. The newly invaded population of An. stephensi in Ethiopia was resistant to insecticides of all four major insecticide classes. Different mechanisms of insecticide resistance, including metabolic and insecticide target site insensitivity, have been developed in An. stephensi. Resistance to DDT was initially glutathione S-transferase based. Target site knockdown resistance was later selected by pyrethroids. Esterases and altered acetylcholinesterase are the underlying cause of organophosphate resistance and cytochrome p450s were involved in pyrethroid metabolic resistance.

Conclusions

Anopheles stephensi is a major malaria vector in Iran and many countries in the region and beyond. The species is leading in terms of development of insecticide resistance as well as developing a variety of resistance mechanisms. Knowledge of the evolution of insecticide resistance and their underlying mechanisms, in particular, are important to Iran, considering the final steps the country is taking towards malaria elimination, but also to other countries in the region for their battle against malaria. This systematic review may also be of value to countries and territories newly invaded by this species, especially in the Horn of Africa, where the malaria situation is already dire.
Literature
1.
go back to reference World Health Organization. World malaria report 2019. Geneva: World Health Organization; 2019. p. 232.CrossRef World Health Organization. World malaria report 2019. Geneva: World Health Organization; 2019. p. 232.CrossRef
2.
go back to reference Edrissian GH. Malaria history and status in Iran. J Sch Public Health Inst Public Health Res. 2003;1:50–61. Edrissian GH. Malaria history and status in Iran. J Sch Public Health Inst Public Health Res. 2003;1:50–61.
3.
go back to reference Schapira A, Zaim M, Raeisi A, Ranjbar M, Kolifarhood G, Nikpour F, et al. History of the successful struggle against malaria in the Islamic Republic of Iran. Tehran: Neekpey; 2018. Schapira A, Zaim M, Raeisi A, Ranjbar M, Kolifarhood G, Nikpour F, et al. History of the successful struggle against malaria in the Islamic Republic of Iran. Tehran: Neekpey; 2018.
4.
go back to reference Azizi MH, Bahadori M. Brief historical perspectives of malaria in Iran. Arch Iran Med. 2013;16:131–5.PubMed Azizi MH, Bahadori M. Brief historical perspectives of malaria in Iran. Arch Iran Med. 2013;16:131–5.PubMed
5.
go back to reference Zahar A. Review of the ecology of malaria vectors in the WHO Eastern Mediterranean Region. Bull World Health Organ. 1974;50:427–40.PubMedPubMedCentral Zahar A. Review of the ecology of malaria vectors in the WHO Eastern Mediterranean Region. Bull World Health Organ. 1974;50:427–40.PubMedPubMedCentral
6.
go back to reference Feachem RG, Phillips AA, Targett G. Shrinking the malaria map: a prospectus on malaria elimination. California: The Global Health Group, University of California; 2009. Feachem RG, Phillips AA, Targett G. Shrinking the malaria map: a prospectus on malaria elimination. California: The Global Health Group, University of California; 2009.
7.
go back to reference Enayati A, Hemingway J. Malaria management: past, present, and future. Ann Rev Ent. 2010;55:569–91.CrossRef Enayati A, Hemingway J. Malaria management: past, present, and future. Ann Rev Ent. 2010;55:569–91.CrossRef
8.
go back to reference Mofidi C, Samimi B, Eshghi N, Ghiassedin M. Further studies of anopheline susceptibility to insecticides in Iran; results of Busvinc and Nash method. Inst Parasit Malariol. 1958;585:1–7. Mofidi C, Samimi B, Eshghi N, Ghiassedin M. Further studies of anopheline susceptibility to insecticides in Iran; results of Busvinc and Nash method. Inst Parasit Malariol. 1958;585:1–7.
9.
go back to reference Mofidi C, Samimi B. Resistance of Anopheles stephensi to dieldrin. Inst Parasit Malariol. 1960;650:3–4. Mofidi C, Samimi B. Resistance of Anopheles stephensi to dieldrin. Inst Parasit Malariol. 1960;650:3–4.
10.
go back to reference Carmichael AG, Motabar M, Sundararaman S, Rowhani F, Golestani J. Entomological evaluation of OMS-33 (0-isopropoxyphenyl methylcarbamate) in a stage VI operational field trial in Iran. WHO/VBC. 1968;105:1–34. Carmichael AG, Motabar M, Sundararaman S, Rowhani F, Golestani J. Entomological evaluation of OMS-33 (0-isopropoxyphenyl methylcarbamate) in a stage VI operational field trial in Iran. WHO/VBC. 1968;105:1–34.
11.
go back to reference Manouchehri A, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28:228–32.PubMed Manouchehri A, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28:228–32.PubMed
12.
go back to reference Golestani J, Motabar M. Field experiment with the use of gamma-BHC for the control of DLN and DDT resistant Anopheles stephensi mysorensis in the Khesht Area, Kazeroun, South of Iran. Acta Med Iran. 1971;14:111–29. Golestani J, Motabar M. Field experiment with the use of gamma-BHC for the control of DLN and DDT resistant Anopheles stephensi mysorensis in the Khesht Area, Kazeroun, South of Iran. Acta Med Iran. 1971;14:111–29.
13.
go back to reference Motabar M, Eshghy N. Field trial of Sumithion (OMS 43) in the Mamasani area, southern Iran, August-December, 1972. Ent Med Parasitol. 1974;12:15–8. Motabar M, Eshghy N. Field trial of Sumithion (OMS 43) in the Mamasani area, southern Iran, August-December, 1972. Ent Med Parasitol. 1974;12:15–8.
14.
go back to reference Manouchehri A, Shahgudian E, Kargar S, Ghiassedin M. A large-scale malathion trial in the Bandar Abbas area. Iran J Public Health. 1972;1:60–8. Manouchehri A, Shahgudian E, Kargar S, Ghiassedin M. A large-scale malathion trial in the Bandar Abbas area. Iran J Public Health. 1972;1:60–8.
15.
go back to reference Eshghy N, Janbakhsh B. Insecticide resistance of Anopheles stephensi mysorensis in the province of Fars, southern Iran. Mosq News. 1976;36:336–9. Eshghy N, Janbakhsh B. Insecticide resistance of Anopheles stephensi mysorensis in the province of Fars, southern Iran. Mosq News. 1976;36:336–9.
16.
go back to reference Manouchehri A, Zaini A, Yazdanpanah H. Selection for resistance to malathion in Anopheles stephensi mysorensis. Mosq News. 1975;35:278–80. Manouchehri A, Zaini A, Yazdanpanah H. Selection for resistance to malathion in Anopheles stephensi mysorensis. Mosq News. 1975;35:278–80.
17.
go back to reference Manouchehri A, Zaini A, Djanbakhsh B. Preliminary note on the resistance of Anopheles stephensi to malathion in Bandar Abbas, southern Iran. Mosq News. 1976;36:207–8. Manouchehri A, Zaini A, Djanbakhsh B. Preliminary note on the resistance of Anopheles stephensi to malathion in Bandar Abbas, southern Iran. Mosq News. 1976;36:207–8.
18.
go back to reference Yaghoobi-Ershadi M, Manouchehri A. Malaria and Hormozgan province. J Sch Med. 1986;3–4:69–79. Yaghoobi-Ershadi M, Manouchehri A. Malaria and Hormozgan province. J Sch Med. 1986;3–4:69–79.
19.
go back to reference Iranpour M, Yaghobi Ershadi M, Motabar M. Susceptibility to organochlorine, organophophorous, carbamate and pyrethroid insecticides of Anopheles stephensi from Minab. Iran J Public Health. 1994;2:87–98. Iranpour M, Yaghobi Ershadi M, Motabar M. Susceptibility to organochlorine, organophophorous, carbamate and pyrethroid insecticides of Anopheles stephensi from Minab. Iran J Public Health. 1994;2:87–98.
20.
go back to reference Mousa-Kazemi S, Yaghobi Ershadi M. Comparison of susceptibility level of wild population of Anopheles stephensi to insecticides in Minab and Bandarabbas. J Birjand Uni Med Sci. 1998;5:32–9. Mousa-Kazemi S, Yaghobi Ershadi M. Comparison of susceptibility level of wild population of Anopheles stephensi to insecticides in Minab and Bandarabbas. J Birjand Uni Med Sci. 1998;5:32–9.
21.
23.
go back to reference Gramiccia G, De Meillon B, Petrides J, Ulrich A. Resistance to DDT in Anopheles stephensi in southern Iraq. Bull World Health Organ. 1958;19:1102–4.PubMedPubMedCentral Gramiccia G, De Meillon B, Petrides J, Ulrich A. Resistance to DDT in Anopheles stephensi in southern Iraq. Bull World Health Organ. 1958;19:1102–4.PubMedPubMedCentral
24.
go back to reference WHO. Insecticide resistance in Anopheles stephensi in Iraq: at the end of 1967. WHO/VBC.1968; 78:1-12. WHO. Insecticide resistance in Anopheles stephensi in Iraq: at the end of 1967. WHO/VBC.1968; 78:1-12.
25.
go back to reference Barwa C. Status of insecticide susceptibility in Afghanistan. General Directorate of Preventive Medicine and Primary Health Care CDD, National Malaria and Leishmaniasis Control Programme; Afghanistan; Ministry of Public Health, Islamic Republic of Afghanistan. 2011. Barwa C. Status of insecticide susceptibility in Afghanistan. General Directorate of Preventive Medicine and Primary Health Care CDD, National Malaria and Leishmaniasis Control Programme; Afghanistan; Ministry of Public Health, Islamic Republic of Afghanistan. 2011.
26.
go back to reference Ahmad M, Buhler C, Pignatelli P, Ranson H, Nahzat SM, Naseem M, et al. Status of insecticide resistance in high-risk malaria provinces in Afghanistan. Malar J. 2016;15:98.PubMedPubMedCentralCrossRef Ahmad M, Buhler C, Pignatelli P, Ranson H, Nahzat SM, Naseem M, et al. Status of insecticide resistance in high-risk malaria provinces in Afghanistan. Malar J. 2016;15:98.PubMedPubMedCentralCrossRef
27.
go back to reference Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, et al. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J. 2017;16:100.PubMedPubMedCentralCrossRef Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, et al. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J. 2017;16:100.PubMedPubMedCentralCrossRef
28.
go back to reference Safi NHZ, Ahmadi AA, Nahzat S, Warusavithana S, Safi N, Valadan R, et al. Status of insecticide resistance and its biochemical and molecular mechanisms in Anopheles stephensi (Diptera: Culicidae) from Afghanistan. Malar J. 2019;18:249.PubMedPubMedCentralCrossRef Safi NHZ, Ahmadi AA, Nahzat S, Warusavithana S, Safi N, Valadan R, et al. Status of insecticide resistance and its biochemical and molecular mechanisms in Anopheles stephensi (Diptera: Culicidae) from Afghanistan. Malar J. 2019;18:249.PubMedPubMedCentralCrossRef
29.
go back to reference Rana SM, Khan EA, Yaqoob A, Latif AA, Abbasi MM. Susceptibility and irritability of adult forms of main malaria vectors against insecticides used in the indoor residual sprays in Muzaffargarh district, Pakistan: a field survey. J Med Entomol. 2014;51:387–91.PubMedCrossRef Rana SM, Khan EA, Yaqoob A, Latif AA, Abbasi MM. Susceptibility and irritability of adult forms of main malaria vectors against insecticides used in the indoor residual sprays in Muzaffargarh district, Pakistan: a field survey. J Med Entomol. 2014;51:387–91.PubMedCrossRef
30.
go back to reference Ali Khan HA, Akram W, Lee S. Resistance to selected pyrethroid insecticides in the malaria mosquito, Anopheles stephensi (Diptera: Culicidae), from Punjab, Pakistan. J Med Entomol. 2018;55:735–8.PubMedCrossRef Ali Khan HA, Akram W, Lee S. Resistance to selected pyrethroid insecticides in the malaria mosquito, Anopheles stephensi (Diptera: Culicidae), from Punjab, Pakistan. J Med Entomol. 2018;55:735–8.PubMedCrossRef
31.
go back to reference Singh RK, Kumar G, Mittal PK. Insecticide susceptibility status of malaria vectors in India: a review. Int J Mosq Res. 2014;1:5–9. Singh RK, Kumar G, Mittal PK. Insecticide susceptibility status of malaria vectors in India: a review. Int J Mosq Res. 2014;1:5–9.
32.
go back to reference Chitra S, Pillai M. Development of organophosphorus and carbamate-resistance in Indian strains of Anopheles stephensi Liston. Proc Anim Sci. 1984;93:159–70.CrossRef Chitra S, Pillai M. Development of organophosphorus and carbamate-resistance in Indian strains of Anopheles stephensi Liston. Proc Anim Sci. 1984;93:159–70.CrossRef
33.
go back to reference Dykes CL, Das MK, Eapen A, Batra CP, Ghosh SK, Vijayan VA, et al. Knockdown resistance (kdr) mutations in Indian Anopheles stephensi (Diptera: Culicidae) populations. J Med Entomol. 2016;53:315–20.PubMedPubMedCentralCrossRef Dykes CL, Das MK, Eapen A, Batra CP, Ghosh SK, Vijayan VA, et al. Knockdown resistance (kdr) mutations in Indian Anopheles stephensi (Diptera: Culicidae) populations. J Med Entomol. 2016;53:315–20.PubMedPubMedCentralCrossRef
34.
go back to reference Ganesh K, Vijayan V, Urmila J, Gopalan N, Prakash S. Role of esterases and monooxygenase in the deltamethrin resistance in Anopheles stephensi Liston (1908), at Mysore. Indian J Exp Biol. 2002;40:583–8.PubMed Ganesh K, Vijayan V, Urmila J, Gopalan N, Prakash S. Role of esterases and monooxygenase in the deltamethrin resistance in Anopheles stephensi Liston (1908), at Mysore. Indian J Exp Biol. 2002;40:583–8.PubMed
35.
go back to reference Gayathri V, Balakrishna Murthy P. Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J Am Mosq Control Assoc. 2006;22:678–88.PubMedCrossRef Gayathri V, Balakrishna Murthy P. Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J Am Mosq Control Assoc. 2006;22:678–88.PubMedCrossRef
36.
go back to reference Hariprasad TP, Shetty NJ. Biochemical basis of alphamethrin resistance in different life stages of Anopheles stephensi strains of Bangalore, India. Pest Manag Sci. 2016;72:1689–701.PubMedCrossRef Hariprasad TP, Shetty NJ. Biochemical basis of alphamethrin resistance in different life stages of Anopheles stephensi strains of Bangalore, India. Pest Manag Sci. 2016;72:1689–701.PubMedCrossRef
37.
go back to reference Rajagopalan N, Vedamanikkam J, Ramoo H. A preliminary note on the development of resistance to DDT by larvae of Anopheles stephensi type in Erode Urban, South India. Bull Nat Soc India Malar Mosq Borne Dis. 1956;4:126–8. Rajagopalan N, Vedamanikkam J, Ramoo H. A preliminary note on the development of resistance to DDT by larvae of Anopheles stephensi type in Erode Urban, South India. Bull Nat Soc India Malar Mosq Borne Dis. 1956;4:126–8.
38.
go back to reference Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, et al. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na + channel of Anopheles culicifacies from Orissa, India. Malar J. 2010;9:67.CrossRef Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, et al. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na + channel of Anopheles culicifacies from Orissa, India. Malar J. 2010;9:67.CrossRef
39.
go back to reference Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J. 2011;10:59.PubMedPubMedCentralCrossRef Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J. 2011;10:59.PubMedPubMedCentralCrossRef
40.
go back to reference Tikar S, Mendki M, Sharma A, Sukumaran D, Veer V, Prakash S, et al. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci. 2011;11:85.PubMedPubMedCentralCrossRef Tikar S, Mendki M, Sharma A, Sukumaran D, Veer V, Prakash S, et al. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci. 2011;11:85.PubMedPubMedCentralCrossRef
41.
go back to reference Tiwari S, Ghosh SK, Ojha VP, Dash AP, Raghavendra K. Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, South India. Malar J. 2010;9:179.PubMedPubMedCentralCrossRef Tiwari S, Ghosh SK, Ojha VP, Dash AP, Raghavendra K. Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, South India. Malar J. 2010;9:179.PubMedPubMedCentralCrossRef
42.
go back to reference Riveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang M-C, Wondji CS. Insecticide resistance in malaria vectors: an update at a global scale. In: Manguin S, Vas D, editors. Towards malaria elimination-a leap forward. New York: Intech Open; 2018. p. 149–75. Riveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang M-C, Wondji CS. Insecticide resistance in malaria vectors: an update at a global scale. In: Manguin S, Vas D, editors. Towards malaria elimination-a leap forward. New York: Intech Open; 2018. p. 149–75.
43.
go back to reference Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.PubMedCrossRef Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.PubMedCrossRef
44.
go back to reference Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–15.PubMedCrossRef Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–15.PubMedCrossRef
45.
go back to reference Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Ann Rev Ent. 2000;45:369–89.CrossRef Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Ann Rev Ent. 2000;45:369–89.CrossRef
46.
go back to reference Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65–72.PubMedPubMedCentralCrossRef Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65–72.PubMedPubMedCentralCrossRef
47.
go back to reference Ganesh KN, Urmila J, Vijayan VA. Pyrethroid susceptibility & enzyme activity in two malaria vectors, Anopheles stephensi (Liston) & A. culicifacies (Giles) from Mysore, India. Indian J Med Res. 2003;117:30–8.PubMed Ganesh KN, Urmila J, Vijayan VA. Pyrethroid susceptibility & enzyme activity in two malaria vectors, Anopheles stephensi (Liston) & A. culicifacies (Giles) from Mysore, India. Indian J Med Res. 2003;117:30–8.PubMed
48.
go back to reference Singh OP, Bali P, Hemingway J, Subbarao SK, Dash AP, Adak T. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato. Malar J. 2009;8:154.PubMedPubMedCentralCrossRef Singh OP, Bali P, Hemingway J, Subbarao SK, Dash AP, Adak T. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato. Malar J. 2009;8:154.PubMedPubMedCentralCrossRef
49.
go back to reference Dharmasiri AG, Perera AY, Harishchandra J, Herath H, Aravindan K, Jayasooriya H, et al. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 2017;16:326.CrossRef Dharmasiri AG, Perera AY, Harishchandra J, Herath H, Aravindan K, Jayasooriya H, et al. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 2017;16:326.CrossRef
50.
go back to reference Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.PubMedCrossRef Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.PubMedCrossRef
51.
go back to reference Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:39–43.PubMedCrossRef Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:39–43.PubMedCrossRef
52.
go back to reference WHO. WHO malaria policy advisory committee (MPAC) meeting: meeting report. Geneva: World Health Organization; 2019. p. 23. WHO. WHO malaria policy advisory committee (MPAC) meeting: meeting report. Geneva: World Health Organization; 2019. p. 23.
53.
go back to reference Seyfarth M, Khaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established-malaria emerging. Parasitol Res. 2019;118:725–32.PubMedCrossRef Seyfarth M, Khaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established-malaria emerging. Parasitol Res. 2019;118:725–32.PubMedCrossRef
54.
go back to reference Yared S, Gebressielasie A, Damodaran L, Bonnell V, Karen L, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J. 2020;19:180.PubMedPubMedCentralCrossRef Yared S, Gebressielasie A, Damodaran L, Bonnell V, Karen L, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J. 2020;19:180.PubMedPubMedCentralCrossRef
55.
go back to reference Surendran SN, Sivabalakrishnan K, Sivasingham A, Jayadas TT, Karvannan K, Santhirasegaram S, et al. Anthropogenic factors driving recent range expansion of the malaria vector Anopheles stephensi. Front Public Health. 2019;7:53.PubMedPubMedCentralCrossRef Surendran SN, Sivabalakrishnan K, Sivasingham A, Jayadas TT, Karvannan K, Santhirasegaram S, et al. Anthropogenic factors driving recent range expansion of the malaria vector Anopheles stephensi. Front Public Health. 2019;7:53.PubMedPubMedCentralCrossRef
56.
go back to reference WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012. p. 132. WHO. Global plan for insecticide resistance management in malaria vectors (GPIRM). Geneva: World Health Organization; 2012. p. 132.
57.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva, World Health Organization. 2016: 48. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva, World Health Organization. 2016: 48.
58.
go back to reference Eshghy N, Ladoni H, Javadian E. Resistance of Anopheles stephensi Liston to malathion in the provice of Fars, Southern Iran. Iran J Public Health. 1985;14:1–8. Eshghy N, Ladoni H, Javadian E. Resistance of Anopheles stephensi Liston to malathion in the provice of Fars, Southern Iran. Iran J Public Health. 1985;14:1–8.
59.
go back to reference Vatandoost N, Borhani N. Susceptibility and irritability levels of main malaria vectors to synthetic pyrethroids in the endemic areas of Iran. Acta Med Iran. 2004;42:240–7. Vatandoost N, Borhani N. Susceptibility and irritability levels of main malaria vectors to synthetic pyrethroids in the endemic areas of Iran. Acta Med Iran. 2004;42:240–7.
60.
go back to reference Vatandoost H, Mashayekhi M, Abaie M, Aflatoonian M, Hanafi-Bojd A, Sharifi I. Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vector Borne Dis. 2005;42:100–8.PubMed Vatandoost H, Mashayekhi M, Abaie M, Aflatoonian M, Hanafi-Bojd A, Sharifi I. Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vector Borne Dis. 2005;42:100–8.PubMed
61.
go back to reference Vatandoost H, Oshaghi M, Abaie M, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97:196–203.PubMedCrossRef Vatandoost H, Oshaghi M, Abaie M, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97:196–203.PubMedCrossRef
62.
go back to reference Djadid ND, Barjesteh H, Raeisi A, Hassanzahi A, Zakeri S. Identification, sequence analysis, and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies, and Anopheles fluviatilis. J Med Entomol. 2006;43:1171–7.PubMed Djadid ND, Barjesteh H, Raeisi A, Hassanzahi A, Zakeri S. Identification, sequence analysis, and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies, and Anopheles fluviatilis. J Med Entomol. 2006;43:1171–7.PubMed
63.
go back to reference Abai M, Mehravaran A, Vatandoost H, Oshaghi M, Javadian E, Mashayekhi M, et al. Comparative performance of imagicides on Anopheles stephensi, main malaria vector in a malarious area, southern Iran. J Vector Borne Dis. 2008;45:307–12.PubMed Abai M, Mehravaran A, Vatandoost H, Oshaghi M, Javadian E, Mashayekhi M, et al. Comparative performance of imagicides on Anopheles stephensi, main malaria vector in a malarious area, southern Iran. J Vector Borne Dis. 2008;45:307–12.PubMed
64.
go back to reference Azizi K, Soltani A, Poodat A, Khodadadi M, Yaran M, Hasanvand B. Susceptibility of Anopheles stephensi against five current chemical insecticides. Hormozgan Med J. 2011;14:305–11. Azizi K, Soltani A, Poodat A, Khodadadi M, Yaran M, Hasanvand B. Susceptibility of Anopheles stephensi against five current chemical insecticides. Hormozgan Med J. 2011;14:305–11.
65.
go back to reference Hanafi-Bojd A, Vatandoost H, Philip E, Stepanova E, Abdi A, Safari R, et al. Malaria situation analysis and stratification in Bandar Abbas County, southern Iran, 2004–2008. Iran J Arthropod Borne Dis. 2010;4:31–41.PubMedPubMedCentral Hanafi-Bojd A, Vatandoost H, Philip E, Stepanova E, Abdi A, Safari R, et al. Malaria situation analysis and stratification in Bandar Abbas County, southern Iran, 2004–2008. Iran J Arthropod Borne Dis. 2010;4:31–41.PubMedPubMedCentral
66.
go back to reference Soleimani Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian M, et al. Vector ecology and susceptibility in a malaria-endemic focus in southern Islamic Republic of Iran. E Mediterr Health J. 2012;18:1034–41.CrossRef Soleimani Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian M, et al. Vector ecology and susceptibility in a malaria-endemic focus in southern Islamic Republic of Iran. E Mediterr Health J. 2012;18:1034–41.CrossRef
67.
go back to reference Vatandoost H, Hanafi-Bojd AA. Indication of pyrethroid resistance in the main malaria vector, Anopheles stephensi from Iran. Asian Pac J Trop Med. 2012;5:722–6.PubMedCrossRef Vatandoost H, Hanafi-Bojd AA. Indication of pyrethroid resistance in the main malaria vector, Anopheles stephensi from Iran. Asian Pac J Trop Med. 2012;5:722–6.PubMedCrossRef
68.
go back to reference Hanafi-Bojd A, Vatandoost H, Oshaghi M, Haghdoost A, Shahi M, Sedaghat M, et al. Entomological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Trop. 2012;121:85–92.PubMedCrossRef Hanafi-Bojd A, Vatandoost H, Oshaghi M, Haghdoost A, Shahi M, Sedaghat M, et al. Entomological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Trop. 2012;121:85–92.PubMedCrossRef
69.
go back to reference Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med. 2016;9:32–8.PubMedCrossRef Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med. 2016;9:32–8.PubMedCrossRef
70.
go back to reference Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi H, et al. Current susceptibility status of Anopheles stephensi (Diptera: Culicidae) to different imagicides in a malarious area, southeastern of Iran. J Arthropod borne Dis. 2016;10:493–500.PubMedPubMedCentral Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi H, et al. Current susceptibility status of Anopheles stephensi (Diptera: Culicidae) to different imagicides in a malarious area, southeastern of Iran. J Arthropod borne Dis. 2016;10:493–500.PubMedPubMedCentral
71.
go back to reference Zare M, Soleimani-Ahmadi M, Davoodi SH, Sanei-Dehkordi A. Insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in an elimination area in Iran. Parasit Vectors. 2016;9:571.PubMedPubMedCentralCrossRef Zare M, Soleimani-Ahmadi M, Davoodi SH, Sanei-Dehkordi A. Insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in an elimination area in Iran. Parasit Vectors. 2016;9:571.PubMedPubMedCentralCrossRef
72.
go back to reference Fathian M, Vatandoost H, Moosa-Kazemi SH, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of southeastern Iran. J Arthropod Borne Dis. 2015;9:22–34.PubMed Fathian M, Vatandoost H, Moosa-Kazemi SH, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of southeastern Iran. J Arthropod Borne Dis. 2015;9:22–34.PubMed
73.
go back to reference Zaim M. Malaria control in Iran–present and future. J Am Mosq Control Assoc. 1987;3:392–6.PubMed Zaim M. Malaria control in Iran–present and future. J Am Mosq Control Assoc. 1987;3:392–6.PubMed
74.
go back to reference Vatandoost H, Shahi H, Abai M, Hanafi-Bojd A, Oshaghi M, Zamani G. Larval habitats of main malaria vectors in Hormozgan province and their susceptibility to different larvicides. Southeast Asian J Trop Med Public Health. 2004;35:22–5.PubMed Vatandoost H, Shahi H, Abai M, Hanafi-Bojd A, Oshaghi M, Zamani G. Larval habitats of main malaria vectors in Hormozgan province and their susceptibility to different larvicides. Southeast Asian J Trop Med Public Health. 2004;35:22–5.PubMed
75.
go back to reference Abbasi M, Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Vatandoost H, Oshaghi MA, Hazratian T, et al. Resistance status of main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae) to insecticides in a malaria Endemic Area, Southern Iran. Asian Pac J Trop Med. 2019;12:43–8.CrossRef Abbasi M, Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Vatandoost H, Oshaghi MA, Hazratian T, et al. Resistance status of main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae) to insecticides in a malaria Endemic Area, Southern Iran. Asian Pac J Trop Med. 2019;12:43–8.CrossRef
76.
go back to reference Vatandoost H, Abai MR, Akbari M, Raeisi A, Yousefi H, Sheikhi S, et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J Arthropod Borne Dis. 2019;13:17–26.PubMedPubMedCentral Vatandoost H, Abai MR, Akbari M, Raeisi A, Yousefi H, Sheikhi S, et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J Arthropod Borne Dis. 2019;13:17–26.PubMedPubMedCentral
77.
go back to reference Shahi M, Hanafi-Bojd A, Vatandoost H, Soleimani Ahmadi M. Susceptibility status of Anopheles stephensi liston the main malaria vector, to deltamethrin and Bacillus thuringiensis in the endemic malarious area of Hormozgan province, southern Iran. J Kerman Uni Med Sci. 2012;20:87–95. Shahi M, Hanafi-Bojd A, Vatandoost H, Soleimani Ahmadi M. Susceptibility status of Anopheles stephensi liston the main malaria vector, to deltamethrin and Bacillus thuringiensis in the endemic malarious area of Hormozgan province, southern Iran. J Kerman Uni Med Sci. 2012;20:87–95.
78.
go back to reference Nikpour F, Vatandoost H, Hanafi-Bojd AA, Raeisi A, Ranjbar M, Enayati AA, et al. Evaluation of deltamethrin in combination of piperonyl butoxide (PBO) against pyrethroid resistant, malaria vector, Anopheles stephensi in IRS implementation: an experimental semi-filed trial in Iran. Iran J Arthropod Borne Dis. 2017;11:469–81. Nikpour F, Vatandoost H, Hanafi-Bojd AA, Raeisi A, Ranjbar M, Enayati AA, et al. Evaluation of deltamethrin in combination of piperonyl butoxide (PBO) against pyrethroid resistant, malaria vector, Anopheles stephensi in IRS implementation: an experimental semi-filed trial in Iran. Iran J Arthropod Borne Dis. 2017;11:469–81.
81.
go back to reference Rathor HR, Nadeem G, Khan IA. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan. Vector Borne Zoonotic Dis. 2013;13:60–6.PubMedCrossRef Rathor HR, Nadeem G, Khan IA. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan. Vector Borne Zoonotic Dis. 2013;13:60–6.PubMedCrossRef
82.
go back to reference WHO. Global report on insecticide resistance in malaria vectors: 2010–2016. Geneva: World Health Organization; 2018. p. 72. WHO. Global report on insecticide resistance in malaria vectors: 2010–2016. Geneva: World Health Organization; 2018. p. 72.
83.
go back to reference Kumari R, Thapar B, Das RG, Kaul S, Lal S. Susceptibility status of malaria vectors to insecticides in India. J Commun Dis. 1998;30:179–85.PubMed Kumari R, Thapar B, Das RG, Kaul S, Lal S. Susceptibility status of malaria vectors to insecticides in India. J Commun Dis. 1998;30:179–85.PubMed
84.
go back to reference Enayati AA. Cross resistance between DDT and permethrin in Anopheles stephensi from Iran. MSc thesis. Tarbiat Modarress University. Tehran. 1992. Enayati AA. Cross resistance between DDT and permethrin in Anopheles stephensi from Iran. MSc thesis. Tarbiat Modarress University. Tehran. 1992.
85.
go back to reference Omer SM, Georghiou GP, Irving SN. DDT/pyrethroid resistance inter-relationships in Anopheles stephensi. Mosq News. 1980;40:200–9. Omer SM, Georghiou GP, Irving SN. DDT/pyrethroid resistance inter-relationships in Anopheles stephensi. Mosq News. 1980;40:200–9.
86.
go back to reference Davari B, Vatandoost H, Oshaghi M, Ladonni H, Enayati A, Shaeghi M, et al. Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol. 2007;89:97–103.CrossRef Davari B, Vatandoost H, Oshaghi M, Ladonni H, Enayati A, Shaeghi M, et al. Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol. 2007;89:97–103.CrossRef
87.
go back to reference Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F. Resistance mechanisms of Anopheles stephensi (Diptera: Culicidae) to temephos. J Arthropod Borne Dis. 2015;9:71–83.PubMed Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F. Resistance mechanisms of Anopheles stephensi (Diptera: Culicidae) to temephos. J Arthropod Borne Dis. 2015;9:71–83.PubMed
88.
go back to reference Soltani A, Vatandoost H, Oshaghi MA, Enayati AA, Chavshin AR. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog Glob Health. 2017;111:289–96.PubMedPubMedCentralCrossRef Soltani A, Vatandoost H, Oshaghi MA, Enayati AA, Chavshin AR. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog Glob Health. 2017;111:289–96.PubMedPubMedCentralCrossRef
89.
go back to reference Gorouhi MA, Oshaghi MA, Vatandoost H, Enayati AA, Raeisi A, Abai MR, et al. Biochemical basis of cyfluthrin and DDT resistance in Anopheles stephensi (Diptera: Culicidae) in malarious area of Iran. J Arthropod Borne Dis. 2018;12:310–20.PubMedPubMedCentral Gorouhi MA, Oshaghi MA, Vatandoost H, Enayati AA, Raeisi A, Abai MR, et al. Biochemical basis of cyfluthrin and DDT resistance in Anopheles stephensi (Diptera: Culicidae) in malarious area of Iran. J Arthropod Borne Dis. 2018;12:310–20.PubMedPubMedCentral
90.
go back to reference Hemingway J. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic Biochem Physiol. 1982;17:149–55.CrossRef Hemingway J. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic Biochem Physiol. 1982;17:149–55.CrossRef
91.
go back to reference Scott J, Georghiou G. Malathion-specific resistance in Anopheles stephensi from Pakistan. J Am Mosq Control Assoc. 1986;2:29–32.PubMed Scott J, Georghiou G. Malathion-specific resistance in Anopheles stephensi from Pakistan. J Am Mosq Control Assoc. 1986;2:29–32.PubMed
92.
go back to reference van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspec. 2012;120:577–82.CrossRef van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspec. 2012;120:577–82.CrossRef
93.
go back to reference WHO. Regional plan of action 2019-2023 for implementation of the global vector control response 2017-2030. World Health Organization. Regional Office for the Eastern Mediterranean. 2019:23. WHO. Regional plan of action 2019-2023 for implementation of the global vector control response 2017-2030. World Health Organization. Regional Office for the Eastern Mediterranean. 2019:23.
94.
go back to reference WHO. Framework for a national plan for monitoring and management of insecticide resistance in malaria vectors. Geneva: World Health Organization; 2017. p. 39. WHO. Framework for a national plan for monitoring and management of insecticide resistance in malaria vectors. Geneva: World Health Organization; 2017. p. 39.
95.
go back to reference WHO. Global vector control response 2017-2030. Geneva: World Health Organization; 2017. p. 64. WHO. Global vector control response 2017-2030. Geneva: World Health Organization; 2017. p. 64.
96.
go back to reference Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis. 2008;8:387–9.PubMedCrossRef Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis. 2008;8:387–9.PubMedCrossRef
97.
go back to reference WHO. Malaria surveillance, monitoring & evaluation: a reference manual. Geneva: World Health Organization; 2018. p. 206. WHO. Malaria surveillance, monitoring & evaluation: a reference manual. Geneva: World Health Organization; 2018. p. 206.
98.
go back to reference Sharp BL, Kleinschmidt I, Streat E, Maharaj R, Barnes KI, Durrheim DN, et al. Seven years of regional malaria control collaboration-Mozambique, South Africa, and Swaziland. Am J Trop Med Hyg. 2007;76:42–7.PubMedCrossRef Sharp BL, Kleinschmidt I, Streat E, Maharaj R, Barnes KI, Durrheim DN, et al. Seven years of regional malaria control collaboration-Mozambique, South Africa, and Swaziland. Am J Trop Med Hyg. 2007;76:42–7.PubMedCrossRef
99.
go back to reference Coetzee M, Horne DWK, Brookea BD, Hunt RH. DDT, dieldrin and pyrethrold Insecticide resistance in African malaria vector mosquitoes: an historical review and implications for future malaria control in southern Africa. S Afr J Sci. 1999;95:215–8. Coetzee M, Horne DWK, Brookea BD, Hunt RH. DDT, dieldrin and pyrethrold Insecticide resistance in African malaria vector mosquitoes: an historical review and implications for future malaria control in southern Africa. S Afr J Sci. 1999;95:215–8.
100.
go back to reference Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara L-A, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41:203–9.PubMedCrossRef Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara L-A, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41:203–9.PubMedCrossRef
101.
go back to reference Paton MG, Karunaratne S, Giakoumaki E, Roberts N, Hemingway J. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J. 2000;346:17–24.PubMedPubMedCentralCrossRef Paton MG, Karunaratne S, Giakoumaki E, Roberts N, Hemingway J. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J. 2000;346:17–24.PubMedPubMedCentralCrossRef
102.
go back to reference Prasad KM, Raghavendra K, Verma V, Velamuri PS, Pande V. Esterases are responsible for malathion resistance in Anopheles stephensi: A proof using biochemical and insecticide inhibition studies. J Vector Borne Dis. 2017;54:226–32.PubMedCrossRef Prasad KM, Raghavendra K, Verma V, Velamuri PS, Pande V. Esterases are responsible for malathion resistance in Anopheles stephensi: A proof using biochemical and insecticide inhibition studies. J Vector Borne Dis. 2017;54:226–32.PubMedCrossRef
103.
go back to reference Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol. 2003;17:138–44.PubMedCrossRef Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol. 2003;17:138–44.PubMedCrossRef
104.
go back to reference Ranson H, Jensen B, Vulule J, Wang X, Hemingway J, Collins F. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.PubMedCrossRef Ranson H, Jensen B, Vulule J, Wang X, Hemingway J, Collins F. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.PubMedCrossRef
105.
go back to reference Reimer L, Fondjo E, Patchoké S, Diallo B, Lee Y, Ng A, et al. Relationship Between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol. 2008;45:260–6.PubMedCrossRef Reimer L, Fondjo E, Patchoké S, Diallo B, Lee Y, Ng A, et al. Relationship Between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol. 2008;45:260–6.PubMedCrossRef
106.
go back to reference Singh O, Dykes C, Adak T. kdr-like mutations in the voltage gated sodium channel of a malaria vector Anopheles stephensi and development of PCR-based assays for their detection. Malar J. 2010;9:1.CrossRef Singh O, Dykes C, Adak T. kdr-like mutations in the voltage gated sodium channel of a malaria vector Anopheles stephensi and development of PCR-based assays for their detection. Malar J. 2010;9:1.CrossRef
107.
go back to reference Darriet F, Guillet P, Guessan RNN, Doannio JMC, Koffi AA, Konan LY, et al. The impact of permethrin and deltamethrin resistance in Anopheles gambiae ss on the efficacy of insecticide-treated mosquito nets (in French). Med Trop (Mars). 1998;58:349–54.PubMed Darriet F, Guillet P, Guessan RNN, Doannio JMC, Koffi AA, Konan LY, et al. The impact of permethrin and deltamethrin resistance in Anopheles gambiae ss on the efficacy of insecticide-treated mosquito nets (in French). Med Trop (Mars). 1998;58:349–54.PubMed
108.
go back to reference Darriet F, N’Guessan R, Koffi AA, Konan L, Doannio JM, Chandre F, et al. Impact of pyrethrin resistance on the efficacity of impregnated mosquito nets in the prevention of malaria: results of tests in experimental cases with deltamethrin SC (in French). Bull Soc Pathol Exot. 2000;93:131–4.PubMed Darriet F, N’Guessan R, Koffi AA, Konan L, Doannio JM, Chandre F, et al. Impact of pyrethrin resistance on the efficacity of impregnated mosquito nets in the prevention of malaria: results of tests in experimental cases with deltamethrin SC (in French). Bull Soc Pathol Exot. 2000;93:131–4.PubMed
109.
go back to reference Darriet F, Robert V, Thovein N, Carnevalle P. Evaluation of the efficacy of permethrin-impregnated intact and perforated mosquito nets against vectors of malaria. WHO/VBC. 1984;84:899. Darriet F, Robert V, Thovein N, Carnevalle P. Evaluation of the efficacy of permethrin-impregnated intact and perforated mosquito nets against vectors of malaria. WHO/VBC. 1984;84:899.
110.
go back to reference Henry MC, Assi SB, Rogier C, Dossou-Yovo J, Chandre F, Guillet P, et al. Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Côte d’Ivoire. Am J Trop Med Hyg. 2005;73:859–64.PubMedCrossRef Henry MC, Assi SB, Rogier C, Dossou-Yovo J, Chandre F, Guillet P, et al. Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Côte d’Ivoire. Am J Trop Med Hyg. 2005;73:859–64.PubMedCrossRef
111.
go back to reference Henry MC, Doannio JM, Darriet F, Nzeyimana I, Carnevale P. Efficacy of permethrin-impregnated Olyset Net mosquito nets in a zone with pyrethroid resistance vectors II Parasitic and clinical evaluation (in French). Med Trop (Mars). 1999;59:355–7.PubMed Henry MC, Doannio JM, Darriet F, Nzeyimana I, Carnevale P. Efficacy of permethrin-impregnated Olyset Net mosquito nets in a zone with pyrethroid resistance vectors II Parasitic and clinical evaluation (in French). Med Trop (Mars). 1999;59:355–7.PubMed
112.
go back to reference N’Guessan R, Corbel V, Akogbéto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis. 2007;13:199–206.PubMedPubMedCentralCrossRef N’Guessan R, Corbel V, Akogbéto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis. 2007;13:199–206.PubMedPubMedCentralCrossRef
113.
go back to reference Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.PubMedPubMedCentralCrossRef Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.PubMedPubMedCentralCrossRef
114.
go back to reference Hemingway J. Field and laboratory manual for the mechanistic detection of insecticide resistance in insects. Geneva: World Health Organization; 1998; WHO-CTD/MAL/986: 35. Hemingway J. Field and laboratory manual for the mechanistic detection of insecticide resistance in insects. Geneva: World Health Organization; 1998; WHO-CTD/MAL/986: 35.
115.
go back to reference Enayati AA, Ladonni H. Biochemical assays baseline data of permethrin resistance in Anopheles stephensi (Diptera, Culicidae) from Iran. Pakistan J Biol Sci. 2006;9:1265–70.CrossRef Enayati AA, Ladonni H. Biochemical assays baseline data of permethrin resistance in Anopheles stephensi (Diptera, Culicidae) from Iran. Pakistan J Biol Sci. 2006;9:1265–70.CrossRef
116.
go back to reference Bigoga JD, Ndangoh DN, Awono-Ambene PH, Patchoke S, Fondjo E, Leke RGF. Pyrethroid resistance in Anopheles gambiae from the rubber cultivated area of Niete, South Region of Cameroon. Acta Trop. 2012;124:210–4.PubMedCrossRef Bigoga JD, Ndangoh DN, Awono-Ambene PH, Patchoke S, Fondjo E, Leke RGF. Pyrethroid resistance in Anopheles gambiae from the rubber cultivated area of Niete, South Region of Cameroon. Acta Trop. 2012;124:210–4.PubMedCrossRef
117.
go back to reference Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankiné O, et al. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa. PLoS ONE. 2017;12:e0173098.PubMedPubMedCentralCrossRef Hien AS, Soma DD, Hema O, Bayili B, Namountougou M, Gnankiné O, et al. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa. PLoS ONE. 2017;12:e0173098.PubMedPubMedCentralCrossRef
118.
go back to reference Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480.PubMedPubMedCentral Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480.PubMedPubMedCentral
119.
go back to reference Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, et al. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors. 2011;4:60.PubMedPubMedCentralCrossRef Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, et al. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors. 2011;4:60.PubMedPubMedCentralCrossRef
120.
go back to reference Yadouleton AWM, Asidi A, Djouaka RF, Brama J, Agossou CD, Akogbeto MC. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malar J. 2009;8:103.PubMedPubMedCentralCrossRef Yadouleton AWM, Asidi A, Djouaka RF, Brama J, Agossou CD, Akogbeto MC. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malar J. 2009;8:103.PubMedPubMedCentralCrossRef
121.
go back to reference Oxborough RM, Kitau J, Jones R, Feston E, Matowo J, Mosha FW, et al. Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS). Malar J. 2014;13:37.PubMedPubMedCentralCrossRef Oxborough RM, Kitau J, Jones R, Feston E, Matowo J, Mosha FW, et al. Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS). Malar J. 2014;13:37.PubMedPubMedCentralCrossRef
122.
go back to reference Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5.PubMedCrossRef Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5.PubMedCrossRef
123.
124.
go back to reference Sahu SS, Thankachy S, Dash S, Nallan K, Swaminathan S, Kasinathan G, et al. Evaluation of long-lasting indoor residual spraying of deltamethrin 62.5 SC-PE against malaria vectors in India. Malar J. 2020;19:19.PubMedPubMedCentralCrossRef Sahu SS, Thankachy S, Dash S, Nallan K, Swaminathan S, Kasinathan G, et al. Evaluation of long-lasting indoor residual spraying of deltamethrin 62.5 SC-PE against malaria vectors in India. Malar J. 2020;19:19.PubMedPubMedCentralCrossRef
125.
go back to reference Toe KH, Müller P, Badolo A, Traore A, Sagnon N, Dabiré RK, et al. Do bednets including piperonyl butoxide offer additional protection against populations of Anopheles gambiae s.l.s that are highly resistant to pyrethroids? An experimental hut evaluation in Burkina Faso. Med Vet Entomol. 2018;32:407–16.PubMedCrossRef Toe KH, Müller P, Badolo A, Traore A, Sagnon N, Dabiré RK, et al. Do bednets including piperonyl butoxide offer additional protection against populations of Anopheles gambiae s.l.s that are highly resistant to pyrethroids? An experimental hut evaluation in Burkina Faso. Med Vet Entomol. 2018;32:407–16.PubMedCrossRef
126.
go back to reference Tungu P, Magesa S, Maxwell C, Malima R, Masue D, Sudi W, et al. Evaluation of Permanet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: An experimental hut trial in Tanzania. Malar J. 2010;9:21.PubMedPubMedCentralCrossRef Tungu P, Magesa S, Maxwell C, Malima R, Masue D, Sudi W, et al. Evaluation of Permanet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: An experimental hut trial in Tanzania. Malar J. 2010;9:21.PubMedPubMedCentralCrossRef
127.
go back to reference Allossogbe M, Gnanguenon V, Yovogan B, Akinro B, Anagonou R, Agossa F, et al. WHO cone bio-assays of classical and new-generation long-lasting insecticidal nets call for innovative insecticides targeting the knock-down resistance mechanism in Benin. Malar J. 2017;16:77.PubMedPubMedCentralCrossRef Allossogbe M, Gnanguenon V, Yovogan B, Akinro B, Anagonou R, Agossa F, et al. WHO cone bio-assays of classical and new-generation long-lasting insecticidal nets call for innovative insecticides targeting the knock-down resistance mechanism in Benin. Malar J. 2017;16:77.PubMedPubMedCentralCrossRef
Metadata
Title
Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region
Authors
Ahmadali Enayati
Ahmad Ali Hanafi-Bojd
Mohammad Mehdi Sedaghat
Morteza Zaim
Janet Hemingway
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03335-0

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.