Skip to main content
Top
Published in: Pediatric Radiology 2/2017

01-02-2017 | Original Article

Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease

Authors: Charlotte Gimpel, Bernd A. Jung, Sabine Jung, Johannes Brado, Daniel Schwendinger, Barbara Burkhardt, Martin Pohl, Katja E. Odening, Julia Geiger, Raoul Arnold

Published in: Pediatric Radiology | Issue 2/2017

Login to get access

Abstract

Background

Echocardiographic examinations have revealed functional cardiac abnormalities in children with chronic kidney disease.

Objective

To assess the feasibility of MRI tissue phase mapping in children and to assess regional left ventricular wall movements in children with chronic kidney disease.

Materials and methods

Twenty pediatric patients with chronic kidney disease (before or after renal transplantation) and 12 healthy controls underwent tissue phase mapping (TPM) to quantify regional left ventricular function through myocardial long (Vz) and short-axis (Vr) velocities at all 3 levels of the left ventricle.

Results

Patients and controls (age: 8 years—20 years) were matched for age, height, weight, gender and heart rate. Patients had higher systolic blood pressure. No patient had left ventricular hypertrophy on MRI or diastolic dysfunction on echocardiography. Fifteen patients underwent tissue Doppler echocardiography, with normal z-scores for mitral early diastolic (VE), late diastolic (VA) and peak systolic (VS) velocities. Throughout all left ventricular levels, peak diastolic Vz and Vr (cm/s) were reduced in patients: Vzbase -10.6 ± 1.9 vs. -13.4 ± 2.0 (P < 0.0003), Vzmid -7.8 ± 1.6 vs. -11 ± 1.5 (P < 0.0001), Vzapex -3.8 ± 1.6 vs. -5.3 ± 1.6 (P = 0.01), Vrbase -4.2 ± 0.8 vs. -4.9 ± 0.7 (P = 0.01), Vrmid -4.7 ± 0.7 vs. -5.4 ± 0.7 (P = 0.01), Vrapex -4.7 ± 1.4 vs. -5.6 ± 1.1 (P = 0.05).

Conclusion

Tissue phase mapping is feasible in children and adolescents. Children with chronic kidney disease show significantly reduced peak diastolic long- and short-axis left ventricular wall velocities, reflecting impaired early diastolic filling. Thus, tissue phase mapping detects chronic kidney disease-related functional myocardial changes before overt left ventricular hypertrophy or echocardiographic diastolic dysfunction occurs.
Literature
1.
go back to reference Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081CrossRef Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081CrossRef
2.
go back to reference McCullough PA, Li S, Jurkovitz CT et al (2008) Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J 156:277–283PubMedCrossRef McCullough PA, Li S, Jurkovitz CT et al (2008) Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J 156:277–283PubMedCrossRef
3.
go back to reference Groothoff JW, Gruppen MP, Offringa M et al (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629PubMedCrossRef Groothoff JW, Gruppen MP, Offringa M et al (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629PubMedCrossRef
4.
go back to reference Sud M, Tangri N, Pintilie M et al (2014) Risk of end-stage renal disease and death after cardiovascular events in chronic kidney disease. Circulation 130:458–465PubMedCrossRef Sud M, Tangri N, Pintilie M et al (2014) Risk of end-stage renal disease and death after cardiovascular events in chronic kidney disease. Circulation 130:458–465PubMedCrossRef
5.
go back to reference Zoccali C, Benedetto FA, Mallamaci F et al (2001) Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol 12:2768–2774PubMed Zoccali C, Benedetto FA, Mallamaci F et al (2001) Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol 12:2768–2774PubMed
6.
go back to reference Shlipak MG, Fried LF, Cushman M et al (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293:1737–1745PubMedCrossRef Shlipak MG, Fried LF, Cushman M et al (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293:1737–1745PubMedCrossRef
7.
go back to reference Johnstone LM, Jones CL, Grigg LE et al (1996) Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int 50:998–1006PubMedCrossRef Johnstone LM, Jones CL, Grigg LE et al (1996) Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int 50:998–1006PubMedCrossRef
8.
go back to reference Mitsnefes MM, Kimball TR, Witt SA et al (2003) Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation 107:864–868PubMedCrossRef Mitsnefes MM, Kimball TR, Witt SA et al (2003) Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation 107:864–868PubMedCrossRef
9.
go back to reference Matteucci MC, Wühl E, Picca S et al (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226PubMedCrossRef Matteucci MC, Wühl E, Picca S et al (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226PubMedCrossRef
10.
go back to reference Goren A, Glaser J, Drukker A (1993) Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol 7:725–728PubMedCrossRef Goren A, Glaser J, Drukker A (1993) Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol 7:725–728PubMedCrossRef
11.
go back to reference Mitsnefes MM, Kimball TR, Border WL et al (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466PubMedCrossRef Mitsnefes MM, Kimball TR, Border WL et al (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466PubMedCrossRef
12.
go back to reference Rinat C, Becker-Cohen R, Nir A et al (2010) A comprehensive study of cardiovascular risk factors, cardiac function and vascular disease in children with chronic renal failure. Nephrol Dial Transplant 25:785–793PubMedCrossRef Rinat C, Becker-Cohen R, Nir A et al (2010) A comprehensive study of cardiovascular risk factors, cardiac function and vascular disease in children with chronic renal failure. Nephrol Dial Transplant 25:785–793PubMedCrossRef
13.
go back to reference Chinali M, de Simone G, Matteucci MC et al (2007) Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol 18:593–598PubMedCrossRef Chinali M, de Simone G, Matteucci MC et al (2007) Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol 18:593–598PubMedCrossRef
14.
go back to reference Raimondi F, Chinali M, Girfoglio D et al (2009) Inappropriate left ventricular mass in children and young adults with chronic renal insufficiency. Pediatr Nephrol 24:2015–2022PubMedCrossRef Raimondi F, Chinali M, Girfoglio D et al (2009) Inappropriate left ventricular mass in children and young adults with chronic renal insufficiency. Pediatr Nephrol 24:2015–2022PubMedCrossRef
15.
go back to reference Chinali M, Matteucci MC, Franceschini A et al (2015) Advanced parameters of cardiac mechanics in children with CKD: the 4C study. Clin J Am Soc Nephrol 10:1357–1363PubMedPubMedCentralCrossRef Chinali M, Matteucci MC, Franceschini A et al (2015) Advanced parameters of cardiac mechanics in children with CKD: the 4C study. Clin J Am Soc Nephrol 10:1357–1363PubMedPubMedCentralCrossRef
16.
go back to reference Tafreshi RI, Human N, Otukesh H (2011) Evaluation of combined left ventricular function using the myocardial performance index in children with chronic kidney disease. Echocardiography 28:97–103PubMedCrossRef Tafreshi RI, Human N, Otukesh H (2011) Evaluation of combined left ventricular function using the myocardial performance index in children with chronic kidney disease. Echocardiography 28:97–103PubMedCrossRef
17.
go back to reference Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794PubMedCrossRef Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794PubMedCrossRef
18.
go back to reference Ten Harkel ADJ, Cransberg K, Van Osch-Gevers M et al (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991PubMedCrossRef Ten Harkel ADJ, Cransberg K, Van Osch-Gevers M et al (2009) Diastolic dysfunction in paediatric patients on peritoneal dialysis and after renal transplantation. Nephrol Dial Transplant 24:1987–1991PubMedCrossRef
19.
go back to reference Simpson JM, Rawlins D, Mathur S et al (2013) Systolic and diastolic ventricular function assessed by tissue Doppler imaging in children with chronic kidney disease. Echocardiography 30:331–337PubMedCrossRef Simpson JM, Rawlins D, Mathur S et al (2013) Systolic and diastolic ventricular function assessed by tissue Doppler imaging in children with chronic kidney disease. Echocardiography 30:331–337PubMedCrossRef
20.
go back to reference Lindblad YT, Axelsson J, Balzano R et al (2013) Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol 28:2003–2013PubMedCrossRef Lindblad YT, Axelsson J, Balzano R et al (2013) Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol 28:2003–2013PubMedCrossRef
21.
go back to reference Schoenmaker NJ, Kuipers IM, van der Lee JH et al (2014) Diastolic dysfunction measured by tissue Doppler imaging in children with end-stage renal disease: a report of the RICH-Q study. Cardiol Young 24:236–244PubMedCrossRef Schoenmaker NJ, Kuipers IM, van der Lee JH et al (2014) Diastolic dysfunction measured by tissue Doppler imaging in children with end-stage renal disease: a report of the RICH-Q study. Cardiol Young 24:236–244PubMedCrossRef
22.
go back to reference Abraham TP, Dimaano VL, Liang H-Y (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609PubMedCrossRef Abraham TP, Dimaano VL, Liang H-Y (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609PubMedCrossRef
23.
go back to reference Petersen SE, Jung BA, Wiesmann F et al (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826PubMedCrossRef Petersen SE, Jung BA, Wiesmann F et al (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826PubMedCrossRef
24.
go back to reference Parekh K, Markl M, Magrath P et al (2014) Assessment of myocardial motion in children and young adults using high-temporal resolution MR tissue phase mapping. J Cardiovasc Magn Reson 16:P328PubMedCentralCrossRef Parekh K, Markl M, Magrath P et al (2014) Assessment of myocardial motion in children and young adults using high-temporal resolution MR tissue phase mapping. J Cardiovasc Magn Reson 16:P328PubMedCentralCrossRef
25.
go back to reference Camarda J, Magrath P, Parekh K et al (2015) Co-registered MR tissue phase mapping and speckle tracking echocardiography: inter-modality comparison of regional myocardial velocities in pediatric patients. J Cardiovasc Magn Reson 17:Q103PubMedCentralCrossRef Camarda J, Magrath P, Parekh K et al (2015) Co-registered MR tissue phase mapping and speckle tracking echocardiography: inter-modality comparison of regional myocardial velocities in pediatric patients. J Cardiovasc Magn Reson 17:Q103PubMedCentralCrossRef
26.
go back to reference Rider OJ, Ajufo E, Ali MK et al (2015) Myocardial tissue phase mapping reveals impaired myocardial tissue velocities in obesity. Int J Cardiovasc Imaging 31:339–347PubMedCrossRef Rider OJ, Ajufo E, Ali MK et al (2015) Myocardial tissue phase mapping reveals impaired myocardial tissue velocities in obesity. Int J Cardiovasc Imaging 31:339–347PubMedCrossRef
27.
go back to reference Föll D, Markl M, Menza M et al (2014) Cold ischaemic time and time after transplantation alter segmental myocardial velocities after heart transplantation. Eur J Cardiothorac Surg 45:502–508PubMedCrossRef Föll D, Markl M, Menza M et al (2014) Cold ischaemic time and time after transplantation alter segmental myocardial velocities after heart transplantation. Eur J Cardiothorac Surg 45:502–508PubMedCrossRef
28.
go back to reference Foell D, Jung B, Germann E et al (2013) Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol 23:339–347PubMedCrossRef Foell D, Jung B, Germann E et al (2013) Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol 23:339–347PubMedCrossRef
29.
go back to reference Foell D, Jung BA, Germann E et al (2013) Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging 37:119–126PubMedCrossRef Foell D, Jung BA, Germann E et al (2013) Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging 37:119–126PubMedCrossRef
30.
go back to reference Codreanu I, Pegg TJ, Selvanayagam JB et al (2011) Details of left ventricular remodeling and the mechanism of paradoxical ventricular septal motion after coronary artery bypass graft surgery. J Invasive Cardiol 23:276–282PubMed Codreanu I, Pegg TJ, Selvanayagam JB et al (2011) Details of left ventricular remodeling and the mechanism of paradoxical ventricular septal motion after coronary artery bypass graft surgery. J Invasive Cardiol 23:276–282PubMed
31.
go back to reference Codreanu I, Robson MD, Rider OJ et al (2014) Details of left ventricular radial wall motion supporting the ventricular theory of the third heart sound obtained by cardiac MR. Br J Radiol 87:20130780PubMedPubMedCentralCrossRef Codreanu I, Robson MD, Rider OJ et al (2014) Details of left ventricular radial wall motion supporting the ventricular theory of the third heart sound obtained by cardiac MR. Br J Radiol 87:20130780PubMedPubMedCentralCrossRef
32.
go back to reference Codreanu I, Robson MD, Rider OJ et al (2013) Effects of ventricular insertion sites on rotational motion of left ventricular segments studied by cardiac MR. Br J Radiol 86:20130326PubMedPubMedCentralCrossRef Codreanu I, Robson MD, Rider OJ et al (2013) Effects of ventricular insertion sites on rotational motion of left ventricular segments studied by cardiac MR. Br J Radiol 86:20130326PubMedPubMedCentralCrossRef
33.
go back to reference Föll D, Jung B, Schilli E et al (2010) Magnetic resonance tissue phase mapping of myocardial motion: new insight in age and gender. Circ Cardiovasc Imaging 3:54–64PubMedCrossRef Föll D, Jung B, Schilli E et al (2010) Magnetic resonance tissue phase mapping of myocardial motion: new insight in age and gender. Circ Cardiovasc Imaging 3:54–64PubMedCrossRef
34.
go back to reference Codreanu I, Robson MD, Golding SJ et al (2010) Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J Cardiovasc Magn Reson 12:48PubMedPubMedCentralCrossRef Codreanu I, Robson MD, Golding SJ et al (2010) Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J Cardiovasc Magn Reson 12:48PubMedPubMedCentralCrossRef
35.
go back to reference Arnold R, Schwendinger D, Jung S et al (2016) Left ventricular mass and systolic function in children with chronic kidney disease-comparing echocardiography with cardiac magnetic resonance imaging. Pediatr Nephrol 31:255–265PubMedCrossRef Arnold R, Schwendinger D, Jung S et al (2016) Left ventricular mass and systolic function in children with chronic kidney disease-comparing echocardiography with cardiac magnetic resonance imaging. Pediatr Nephrol 31:255–265PubMedCrossRef
36.
go back to reference Bauer S, Markl M, Föll D et al (2013) K-t GRAPPA accelerated phase contrast MRI: improved assessment of blood flow and 3-directional myocardial motion during breath-hold. J Magn Reson Imaging 38:1054–1062PubMedCrossRef Bauer S, Markl M, Föll D et al (2013) K-t GRAPPA accelerated phase contrast MRI: improved assessment of blood flow and 3-directional myocardial motion during breath-hold. J Magn Reson Imaging 38:1054–1062PubMedCrossRef
37.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRef
38.
go back to reference Schmitz L, Koch H, Bein G et al (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 32:1441–1448PubMedCrossRef Schmitz L, Koch H, Bein G et al (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 32:1441–1448PubMedCrossRef
39.
go back to reference Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314PubMedCrossRef Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314PubMedCrossRef
40.
go back to reference Dallaire F, Slorach C, Hui W et al (2015) Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging 8:e002167PubMedCrossRef Dallaire F, Slorach C, Hui W et al (2015) Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging 8:e002167PubMedCrossRef
41.
go back to reference Neuhauser HK, Thamm M, Ellert U et al (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988PubMedCrossRef Neuhauser HK, Thamm M, Ellert U et al (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988PubMedCrossRef
42.
go back to reference Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29PubMedPubMedCentralCrossRef Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29PubMedPubMedCentralCrossRef
43.
go back to reference Gross M-L, Ritz E (2008) Hypertrophy and fibrosis in the cardiomyopathy of uremia--beyond coronary heart disease. Semin Dial 21:308–318PubMedCrossRef Gross M-L, Ritz E (2008) Hypertrophy and fibrosis in the cardiomyopathy of uremia--beyond coronary heart disease. Semin Dial 21:308–318PubMedCrossRef
44.
go back to reference Weaver DJ Jr, Kimball TR, Koury PR et al (2009) Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease. Pediatr Nephrol 24:565–570PubMedCrossRef Weaver DJ Jr, Kimball TR, Koury PR et al (2009) Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease. Pediatr Nephrol 24:565–570PubMedCrossRef
45.
go back to reference Mencarelli F, Fabi M, Corazzi V et al (2014) Left ventricular mass and cardiac function in a population of children with chronic kidney disease. Pediatr Nephrol 29:893–900PubMedCrossRef Mencarelli F, Fabi M, Corazzi V et al (2014) Left ventricular mass and cardiac function in a population of children with chronic kidney disease. Pediatr Nephrol 29:893–900PubMedCrossRef
46.
go back to reference Dogan CS, Akman S, Simsek A et al (2015) Assessment of left ventricular function by tissue Doppler echocardiography in pediatric chronic kidney disease. Ren Fail 37:1094–1099PubMedCrossRef Dogan CS, Akman S, Simsek A et al (2015) Assessment of left ventricular function by tissue Doppler echocardiography in pediatric chronic kidney disease. Ren Fail 37:1094–1099PubMedCrossRef
47.
go back to reference van Huis M, Schoenmaker NJ, Groothoff JW et al (2016) Impaired longitudinal deformation measured by speckle-tracking echocardiography in children with end-stage renal disease. Pediatr Nephrol 31:1499–1508PubMedPubMedCentralCrossRef van Huis M, Schoenmaker NJ, Groothoff JW et al (2016) Impaired longitudinal deformation measured by speckle-tracking echocardiography in children with end-stage renal disease. Pediatr Nephrol 31:1499–1508PubMedPubMedCentralCrossRef
48.
go back to reference Han JH, Han JS, Kim EJ et al (2015) Diastolic dysfunction is an independent predictor of cardiovascular events in incident dialysis patients with preserved systolic function. PLoS ONE 10:e0118694PubMedPubMedCentralCrossRef Han JH, Han JS, Kim EJ et al (2015) Diastolic dysfunction is an independent predictor of cardiovascular events in incident dialysis patients with preserved systolic function. PLoS ONE 10:e0118694PubMedPubMedCentralCrossRef
Metadata
Title
Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease
Authors
Charlotte Gimpel
Bernd A. Jung
Sabine Jung
Johannes Brado
Daniel Schwendinger
Barbara Burkhardt
Martin Pohl
Katja E. Odening
Julia Geiger
Raoul Arnold
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 2/2017
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3741-5

Other articles of this Issue 2/2017

Pediatric Radiology 2/2017 Go to the issue

Hermes

Hermes