Skip to main content
Top
Published in: Skeletal Radiology 9/2022

Open Access 28-03-2022 | Magnetic Resonance Imaging | Review Article

Society of Skeletal Radiology– white paper. Guidelines for the diagnostic management of incidental solitary bone lesions on CT and MRI in adults: bone reporting and data system (Bone-RADS)

Authors: Connie Y. Chang, Hillary W. Garner, Shivani Ahlawat, Behrang Amini, Matthew D. Bucknor, Jonathan A. Flug, Iman Khodarahmi, Michael E. Mulligan, Jeffrey J. Peterson, Geoffrey M. Riley, Mohammad Samim, Santiago A. Lozano-Calderon, Jim S. Wu

Published in: Skeletal Radiology | Issue 9/2022

Login to get access

Abstract

The purpose of this article is to present algorithms for the diagnostic management of solitary bone lesions incidentally encountered on computed tomography (CT) and magnetic resonance (MRI) in adults. Based on review of the current literature and expert opinion, the Practice Guidelines and Technical Standards Committee of the Society of Skeletal Radiology (SSR) proposes a bone reporting and data system (Bone-RADS) for incidentally encountered solitary bone lesions on CT and MRI with four possible diagnostic management recommendations (Bone-RADS1, leave alone; Bone-RADS2, perform different imaging modality; Bone-RADS3, perform follow-up imaging; Bone-RADS4, biopsy and/or oncologic referral). Two algorithms for CT based on lesion density (lucent or sclerotic/mixed) and two for MRI allow the user to arrive at a specific Bone-RADS management recommendation. Representative cases are provided to illustrate the usability of the algorithms.
Literature
2.
go back to reference Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246:662–74.PubMedCrossRef Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246:662–74.PubMedCrossRef
3.
go back to reference Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134:577–83.PubMedCrossRef Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134:577–83.PubMedCrossRef
4.
go back to reference Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am. 1981;19:715–48.PubMed Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am. 1981;19:715–48.PubMed
5.
go back to reference Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin North Am. 1981;19:749–83.PubMed Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin North Am. 1981;19:749–83.PubMed
6.
go back to reference Sweet DE, Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part III: matrix patterns. Radiol Clin North Am. 1981;19:785–814.PubMed Sweet DE, Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part III: matrix patterns. Radiol Clin North Am. 1981;19:785–814.PubMed
7.
go back to reference Jelinek JS, Murphey MD, Welker JA, Henshaw RM, Kransdorf MJ, Shmookler BM, et al. Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology. 2002;223:731–7.PubMedCrossRef Jelinek JS, Murphey MD, Welker JA, Henshaw RM, Kransdorf MJ, Shmookler BM, et al. Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology. 2002;223:731–7.PubMedCrossRef
8.
go back to reference Wu JS, Goldsmith JD, Horwich PJ, Shetty SK, Hochman MG. Bone and soft-tissue lesions: what factors affect diagnostic yield of image-guided core-needle biopsy? Radiology. 2008;248:962–70.PubMedCrossRef Wu JS, Goldsmith JD, Horwich PJ, Shetty SK, Hochman MG. Bone and soft-tissue lesions: what factors affect diagnostic yield of image-guided core-needle biopsy? Radiology. 2008;248:962–70.PubMedCrossRef
9.
go back to reference Kim WH, Kim CG, Kim D-W. Optimal CT number range for adipose tissue when determining lean body mass in whole-body F-18 FDG PET/CT studies. Nucl Med Mol Imaging. 2012;46:294–9.PubMedPubMedCentralCrossRef Kim WH, Kim CG, Kim D-W. Optimal CT number range for adipose tissue when determining lean body mass in whole-body F-18 FDG PET/CT studies. Nucl Med Mol Imaging. 2012;46:294–9.PubMedPubMedCentralCrossRef
10.
go back to reference Alawi M, Begum A, Harraz M, Alawi H, Bamagos S, Yaghmour A, et al. Dual-energy X-ray absorptiometry (DEXA) scan versus computed tomography for bone density assessment. Cureus. 2021;13:e13261.PubMedPubMedCentral Alawi M, Begum A, Harraz M, Alawi H, Bamagos S, Yaghmour A, et al. Dual-energy X-ray absorptiometry (DEXA) scan versus computed tomography for bone density assessment. Cureus. 2021;13:e13261.PubMedPubMedCentral
11.
go back to reference Gerster JC, Landry M, Dufresne L, Meuwly JY. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis. 2002;61:52–4.PubMedPubMedCentralCrossRef Gerster JC, Landry M, Dufresne L, Meuwly JY. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis. 2002;61:52–4.PubMedPubMedCentralCrossRef
12.
go back to reference Leffler SG, Chew FS. CT-guided percutaneous biopsy of sclerotic bone lesions: diagnostic yield and accuracy. AJR Am J Roentgenol. 1999;172:1389–92.PubMedCrossRef Leffler SG, Chew FS. CT-guided percutaneous biopsy of sclerotic bone lesions: diagnostic yield and accuracy. AJR Am J Roentgenol. 1999;172:1389–92.PubMedCrossRef
13.
go back to reference NíMhuircheartaigh J, McMahon C, Lin Y-C, Wu J. Diagnostic yield of percutaneous biopsy for sclerotic bone lesions: influence of mean Hounsfield units. Clin Imaging. 2017;46:53–6.CrossRef NíMhuircheartaigh J, McMahon C, Lin Y-C, Wu J. Diagnostic yield of percutaneous biopsy for sclerotic bone lesions: influence of mean Hounsfield units. Clin Imaging. 2017;46:53–6.CrossRef
14.
go back to reference Cohen MG, McMahon CJ, Kung JW, Wu JS. Comparison of battery-powered and manual bone biopsy systems for core needle biopsy of sclerotic bone lesions. AJR Am J Roentgenol. 2016;206:W83-86.PubMedCrossRef Cohen MG, McMahon CJ, Kung JW, Wu JS. Comparison of battery-powered and manual bone biopsy systems for core needle biopsy of sclerotic bone lesions. AJR Am J Roentgenol. 2016;206:W83-86.PubMedCrossRef
15.
go back to reference Li Y, Du Y, Luo TY, Yang HF, Yu JH, Xu XX, et al. Factors influencing diagnostic yield of CT-guided percutaneous core needle biopsy for bone lesions. Clin Radiol. 2014;69:e43-47.PubMedCrossRef Li Y, Du Y, Luo TY, Yang HF, Yu JH, Xu XX, et al. Factors influencing diagnostic yield of CT-guided percutaneous core needle biopsy for bone lesions. Clin Radiol. 2014;69:e43-47.PubMedCrossRef
16.
go back to reference Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11:321.PubMedPubMedCentral Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11:321.PubMedPubMedCentral
17.
go back to reference Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging JMRI. 1997;7:394–8.PubMedCrossRef Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging JMRI. 1997;7:394–8.PubMedCrossRef
18.
go back to reference Ulano A, Bredella MA, Burke P, Chebib I, Simeone FJ, Huang AJ, et al. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. AJR Am J Roentgenol. 2016;207:362–8.PubMedCrossRef Ulano A, Bredella MA, Burke P, Chebib I, Simeone FJ, Huang AJ, et al. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. AJR Am J Roentgenol. 2016;207:362–8.PubMedCrossRef
19.
go back to reference Chung CB, Murphey M, Cho G, Schweitzer M, Hodler J, Haghihi P, et al. Osseous lesions of the pelvis and long tubular bones containing both fat and fluid-like signal intensity: an analysis of 28 patients. Eur J Radiol. 2005;53:103–9.PubMedCrossRef Chung CB, Murphey M, Cho G, Schweitzer M, Hodler J, Haghihi P, et al. Osseous lesions of the pelvis and long tubular bones containing both fat and fluid-like signal intensity: an analysis of 28 patients. Eur J Radiol. 2005;53:103–9.PubMedCrossRef
20.
go back to reference Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology. 1993;188:249–52.PubMedCrossRef Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology. 1993;188:249–52.PubMedCrossRef
21.
go back to reference Simpfendorfer CS, Ilaslan H, Davies AM, James SL, Obuchowski NA, Sundaram M. Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Skeletal Radiol. 2008;37:797–804.PubMedCrossRef Simpfendorfer CS, Ilaslan H, Davies AM, James SL, Obuchowski NA, Sundaram M. Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Skeletal Radiol. 2008;37:797–804.PubMedCrossRef
22.
go back to reference Kim S, Lee G, Park S, Pyo H, Cho J. Body fat measurement in computed tomography image. Biomed Sci INstrum. 1999;35:303–8.PubMed Kim S, Lee G, Park S, Pyo H, Cho J. Body fat measurement in computed tomography image. Biomed Sci INstrum. 1999;35:303–8.PubMed
23.
go back to reference Lev M, Gonzalez R. CT Angiography and CT Perfusion. Brain Mapp Methods. 2nd ed. 2002. Lev M, Gonzalez R. CT Angiography and CT Perfusion. Brain Mapp Methods. 2nd ed. 2002.
24.
go back to reference Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ. From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiogr Rev Publ Radiol Soc N Am Inc. 2004;24:1433–66. Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ. From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiogr Rev Publ Radiol Soc N Am Inc. 2004;24:1433–66.
25.
26.
go back to reference Sala F, Dapoto A, Morzenti C, Firetto MC, Valle C, Tomasoni A, et al. Bone islands incidentally detected on computed tomography: frequency of enostosis and differentiation from untreated osteoblastic metastases based on CT attenuation value. Br J Radiol. 2019;92:20190249 Sala F, Dapoto A, Morzenti C, Firetto MC, Valle C, Tomasoni A, et al. Bone islands incidentally detected on computed tomography: frequency of enostosis and differentiation from untreated osteoblastic metastases based on CT attenuation value. Br J Radiol. 2019;92:20190249
27.
go back to reference Hong JH, Jung J-Y, Jo A, Nam Y, Pak S, Lee S-Y, et al. Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology. 2021;299:626–32.PubMedCrossRef Hong JH, Jung J-Y, Jo A, Nam Y, Pak S, Lee S-Y, et al. Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology. 2021;299:626–32.PubMedCrossRef
28.
go back to reference Fitzpatrick KA, Taljanovic MS, Speer DP, Graham AR, Jacobson JA, Barnes GR, et al. Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol. 2004;182:1389–98.PubMedCrossRef Fitzpatrick KA, Taljanovic MS, Speer DP, Graham AR, Jacobson JA, Barnes GR, et al. Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol. 2004;182:1389–98.PubMedCrossRef
29.
go back to reference Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiogr Rev Publ Radiol Soc N Am Inc. 1998;18:1213–37 (quiz 1244–5). Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiogr Rev Publ Radiol Soc N Am Inc. 1998;18:1213–37 (quiz 1244–5).
30.
go back to reference Murphey MD, Walker EA, Wilson AJ, Kransdorf MJ, Temple HT, Gannon FH. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics. 2003;23:1245–78.PubMedCrossRef Murphey MD, Walker EA, Wilson AJ, Kransdorf MJ, Temple HT, Gannon FH. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics. 2003;23:1245–78.PubMedCrossRef
31.
32.
go back to reference Ahmed S, Jubouri S, Mulligan M. Incidental long bone cartilage lesions: is any further imaging workup needed? Skeletal Radiol. 2021;50:1189–96.PubMedCrossRef Ahmed S, Jubouri S, Mulligan M. Incidental long bone cartilage lesions: is any further imaging workup needed? Skeletal Radiol. 2021;50:1189–96.PubMedCrossRef
33.
go back to reference The World Health Organization Classification of Tumors Editorial Board: Soft Tissue and Bone Tumors. 5th ed. Lyon: IARC Press; 2021. The World Health Organization Classification of Tumors Editorial Board: Soft Tissue and Bone Tumors. 5th ed. Lyon: IARC Press; 2021.
34.
go back to reference Oliveira I, Chavda A, Rajakulasingam R, Saifuddin A. Chondral tumors: discrepancy rate between needle biopsy and surgical histology. Skeletal Radiol. 2020;49:1115–25.PubMedCrossRef Oliveira I, Chavda A, Rajakulasingam R, Saifuddin A. Chondral tumors: discrepancy rate between needle biopsy and surgical histology. Skeletal Radiol. 2020;49:1115–25.PubMedCrossRef
35.
go back to reference Kendell SD, Collins MS, Adkins MC, Sundaram M, Unni KK. Radiographic differentiation of enchondroma from low-grade chondrosarcoma in the fibula. Skeletal Radiol. 2004;33:458–66.PubMedCrossRef Kendell SD, Collins MS, Adkins MC, Sundaram M, Unni KK. Radiographic differentiation of enchondroma from low-grade chondrosarcoma in the fibula. Skeletal Radiol. 2004;33:458–66.PubMedCrossRef
36.
go back to reference Bernard S, Walker E, Raghavan M. An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies. AJR Am J Roentgenol. 2017;208:960–70.PubMedCrossRef Bernard S, Walker E, Raghavan M. An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies. AJR Am J Roentgenol. 2017;208:960–70.PubMedCrossRef
37.
go back to reference Goodwin PN. Methodologies for the measurement of bone density and their precision and accuracy. Semin Nucl Med. 1987;17:293–304.PubMedCrossRef Goodwin PN. Methodologies for the measurement of bone density and their precision and accuracy. Semin Nucl Med. 1987;17:293–304.PubMedCrossRef
38.
go back to reference Simeone FJ, Bennett DL, Chang CY, Huang AJ, Kattapuram SV, Bredella MA, et al. Retrospective analysis of intravertebral collateral enhancement in patients with central venous obstruction. Skeletal Radiol. 2016;45:163–8.PubMedCrossRef Simeone FJ, Bennett DL, Chang CY, Huang AJ, Kattapuram SV, Bredella MA, et al. Retrospective analysis of intravertebral collateral enhancement in patients with central venous obstruction. Skeletal Radiol. 2016;45:163–8.PubMedCrossRef
39.
go back to reference Hanrahan CJ, Shah LM. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol. 2011;197:1309–21.PubMedCrossRef Hanrahan CJ, Shah LM. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol. 2011;197:1309–21.PubMedCrossRef
40.
go back to reference Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.PubMedCrossRef Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.PubMedCrossRef
41.
go back to reference Crema MD, Marra MD, Guermazi A, Roemer FW, Bohndorf K, Jomaah N. MDCT arthrography features of ulnocarpal impaction syndrome. AJR Am J Roentgenol. 2009;193:1376–81.PubMedCrossRef Crema MD, Marra MD, Guermazi A, Roemer FW, Bohndorf K, Jomaah N. MDCT arthrography features of ulnocarpal impaction syndrome. AJR Am J Roentgenol. 2009;193:1376–81.PubMedCrossRef
43.
go back to reference Suh CH, Yun SJ, Jin W, Park SY, Ryu C-W, Lee SH. Diagnostic performance of in-phase and opposed-phase chemical-shift imaging for differentiating benign and malignant vertebral marrow lesions: a meta-analysis. AJR Am J Roentgenol. 2018;211:W188–97.PubMedCrossRef Suh CH, Yun SJ, Jin W, Park SY, Ryu C-W, Lee SH. Diagnostic performance of in-phase and opposed-phase chemical-shift imaging for differentiating benign and malignant vertebral marrow lesions: a meta-analysis. AJR Am J Roentgenol. 2018;211:W188–97.PubMedCrossRef
44.
go back to reference Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol. 1997;169:1439–47.PubMedCrossRef Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol. 1997;169:1439–47.PubMedCrossRef
45.
go back to reference Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237:590–6.PubMedCrossRef Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237:590–6.PubMedCrossRef
46.
go back to reference Kohl CA, Chivers FS, Lorans R, Roberts CC, Kransdorf MJ. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution’s experience. Skeletal Radiol. 2014;43:1079–84.PubMedCrossRef Kohl CA, Chivers FS, Lorans R, Roberts CC, Kransdorf MJ. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution’s experience. Skeletal Radiol. 2014;43:1079–84.PubMedCrossRef
47.
go back to reference Saifuddin A, Shafiq H, Malhotra K, Santiago R, Pressney I. Comparison of in-phase and opposed-phase T1W gradient echo and T2W fast spin echo dixon chemical shift imaging for the assessment of non-neoplastic, benign neoplastic and malignant marrow lesions. Skeletal Radiol. 2021;50:1209–18.PubMedCrossRef Saifuddin A, Shafiq H, Malhotra K, Santiago R, Pressney I. Comparison of in-phase and opposed-phase T1W gradient echo and T2W fast spin echo dixon chemical shift imaging for the assessment of non-neoplastic, benign neoplastic and malignant marrow lesions. Skeletal Radiol. 2021;50:1209–18.PubMedCrossRef
48.
go back to reference Seiderer M, Staebler A, Wagner H. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time. Eur Radiol. 1999;9:652–61.PubMedCrossRef Seiderer M, Staebler A, Wagner H. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time. Eur Radiol. 1999;9:652–61.PubMedCrossRef
50.
go back to reference Rodallec MH, Feydy A, Larousserie F, Anract P, Campagna R, Babinet A, et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiogr Rev Publ Radiol Soc N Am Inc. 2008;28:1019–41. Rodallec MH, Feydy A, Larousserie F, Anract P, Campagna R, Babinet A, et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiogr Rev Publ Radiol Soc N Am Inc. 2008;28:1019–41.
51.
go back to reference Zimmer WD, Berquist TH, McLeod RA, Sim FH, Pritchard DJ, Shives TC, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology. 1985;155:709–18.PubMedCrossRef Zimmer WD, Berquist TH, McLeod RA, Sim FH, Pritchard DJ, Shives TC, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology. 1985;155:709–18.PubMedCrossRef
52.
go back to reference Pascuzzi CA, Dahlin DC, Clagett OT. Primary tumors of the ribs and sternum. Surg Gynecol Obstet. 1957;104:390–400.PubMed Pascuzzi CA, Dahlin DC, Clagett OT. Primary tumors of the ribs and sternum. Surg Gynecol Obstet. 1957;104:390–400.PubMed
53.
go back to reference Woo S, Kim SY, Kim SH, Cho JY. JOURNAL CLUB: Identification of bone metastasis with routine prostate MRI: a study of patients with newly diagnosed prostate cancer. AJR Am J Roentgenol. 2016;206:1156–63.PubMedCrossRef Woo S, Kim SY, Kim SH, Cho JY. JOURNAL CLUB: Identification of bone metastasis with routine prostate MRI: a study of patients with newly diagnosed prostate cancer. AJR Am J Roentgenol. 2016;206:1156–63.PubMedCrossRef
54.
go back to reference Kayhan A, Yang C, Soylu FN, Lakadamyalı H, Sethi I, Karczmar G, et al. Dynamic contrast-enhanced MR imaging findings of bone metastasis in patients with prostate cancer. World J Radiol. 2011;3:241–5.PubMedPubMedCentralCrossRef Kayhan A, Yang C, Soylu FN, Lakadamyalı H, Sethi I, Karczmar G, et al. Dynamic contrast-enhanced MR imaging findings of bone metastasis in patients with prostate cancer. World J Radiol. 2011;3:241–5.PubMedPubMedCentralCrossRef
55.
go back to reference Kwai AH, Stomper PC, Kaplan WD. Clinical significance of isolated scintigraphic sternal lesions in patients with breast cancer. J Nucl Med Off Publ Soc Nucl Med. 1988;29:324–8. Kwai AH, Stomper PC, Kaplan WD. Clinical significance of isolated scintigraphic sternal lesions in patients with breast cancer. J Nucl Med Off Publ Soc Nucl Med. 1988;29:324–8.
56.
go back to reference Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551–8.PubMedCrossRef Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551–8.PubMedCrossRef
57.
58.
go back to reference Tins BJ, Berkowitz YJ, Konala P, Davies M, Cassar-Pullicino VN, Lalam R, et al. Intraosseous lipomas originating from simple bone cysts. Skeletal Radiol. 2021;50:801–6.PubMedCrossRef Tins BJ, Berkowitz YJ, Konala P, Davies M, Cassar-Pullicino VN, Lalam R, et al. Intraosseous lipomas originating from simple bone cysts. Skeletal Radiol. 2021;50:801–6.PubMedCrossRef
59.
go back to reference Greenspan A. Bone island (enostosis): current concept–a review. Skeletal Radiol. 1995;24:111–5.PubMed Greenspan A. Bone island (enostosis): current concept–a review. Skeletal Radiol. 1995;24:111–5.PubMed
60.
go back to reference Azar A, Garner HW, Rhodes NG, Yarlagadda B, Wessell DE. CT attenuation values do not reliably distinguish benign sclerotic lesions from osteoblastic metastases in patients undergoing bone biopsy. AJR Am J Roentgenol. 2021;216:1022–30.PubMedCrossRef Azar A, Garner HW, Rhodes NG, Yarlagadda B, Wessell DE. CT attenuation values do not reliably distinguish benign sclerotic lesions from osteoblastic metastases in patients undergoing bone biopsy. AJR Am J Roentgenol. 2021;216:1022–30.PubMedCrossRef
63.
go back to reference Kransdorf MJ, Moser RP, Gilkey FW. Fibrous dysplasia. Radiogr Rev Publ Radiol Soc N Am Inc. 1990;10:519–37. Kransdorf MJ, Moser RP, Gilkey FW. Fibrous dysplasia. Radiogr Rev Publ Radiol Soc N Am Inc. 1990;10:519–37.
64.
65.
go back to reference Kransdorf MJ, Sweet DE. Aneurysmal bone cyst: concept, controversy, clinical presentation, and imaging. AJR Am J Roentgenol. 1995;164:573–80.PubMedCrossRef Kransdorf MJ, Sweet DE. Aneurysmal bone cyst: concept, controversy, clinical presentation, and imaging. AJR Am J Roentgenol. 1995;164:573–80.PubMedCrossRef
66.
go back to reference Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol. 2011;197:1298–308.PubMedCrossRef Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol. 2011;197:1298–308.PubMedCrossRef
67.
go back to reference Resnick D, Niwayama G, Coutts RD. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. AJR Am J Roentgenol. 1977;128:799–806.PubMedCrossRef Resnick D, Niwayama G, Coutts RD. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. AJR Am J Roentgenol. 1977;128:799–806.PubMedCrossRef
68.
go back to reference McAllister VL, Kendall BE, Bull JW. Symptomatic vertebral haemangiomas. Brain. J Neurol. 1975;98:71–80. McAllister VL, Kendall BE, Bull JW. Symptomatic vertebral haemangiomas. Brain. J Neurol. 1975;98:71–80.
69.
go back to reference Pastushyn AI, Slin’ko EI, Mirzoyeva GM. Vertebral hemangiomas: diagnosis, management, natural history and clinicopathological correlates in 86 patients. Surg Neurol. 1998;50:535–47.PubMedCrossRef Pastushyn AI, Slin’ko EI, Mirzoyeva GM. Vertebral hemangiomas: diagnosis, management, natural history and clinicopathological correlates in 86 patients. Surg Neurol. 1998;50:535–47.PubMedCrossRef
Metadata
Title
Society of Skeletal Radiology– white paper. Guidelines for the diagnostic management of incidental solitary bone lesions on CT and MRI in adults: bone reporting and data system (Bone-RADS)
Authors
Connie Y. Chang
Hillary W. Garner
Shivani Ahlawat
Behrang Amini
Matthew D. Bucknor
Jonathan A. Flug
Iman Khodarahmi
Michael E. Mulligan
Jeffrey J. Peterson
Geoffrey M. Riley
Mohammad Samim
Santiago A. Lozano-Calderon
Jim S. Wu
Publication date
28-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 9/2022
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-022-04022-8

Other articles of this Issue 9/2022

Skeletal Radiology 9/2022 Go to the issue