Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2020

01-08-2020 | Magnetic Resonance Imaging | Research Article

Low-level fat fraction quantification at 3 T: comparative study of different tools for water–fat reconstruction and MR spectroscopy

Authors: Radim Kořínek, Martin Gajdošík, Siegfried Trattnig, Zenon Starčuk Jr., Martin Krššák

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 4/2020

Login to get access

Abstract

Objectives

Chemical Shift Encoded Magnetic Resonance Imaging (CSE-MRI)-based quantification of low-level (< 5% of proton density fat fraction—PDFF) fat infiltration requires highly accurate data reconstruction for the assessment of hepatic or pancreatic fat accumulation in diagnostics and biomedical research.

Materials and methods

We compare three software tools available for water/fat image reconstruction and PDFF quantification with MRS as the reference method. Based on the algorithm exploited in the tested software, the accuracy of fat fraction quantification varies. We evaluate them in phantom and in vivo MRS and MRI measurements.

Results

The signal model of Intralipid 20% emulsion used for phantoms was established for 3 T and 9.4 T fields. In all cases, we noticed a high coefficient of determination (R-squared) between MRS and MRI–PDFF measurements: in phantoms <0.9924–0.9990>; and in vivo <0.8069–0.9552>. Bland–Altman analysis was applied to phantom and in vivo measurements.

Discussion

Multi-echo MRI in combination with an advanced algorithm including multi-peak spectrum modeling appears as a valuable and accurate method for low-level PDFF quantification over large FOV in high resolution, and is much faster than MRS methods. The graph-cut algorithm (GC) showed the fewest water/fat swaps in the PDFF maps, and hence stands out as the most robust method of those tested.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dixon W (1984) Simple proton spectroscopic imaging. Radiology 153:189–194PubMed Dixon W (1984) Simple proton spectroscopic imaging. Radiology 153:189–194PubMed
2.
go back to reference Glover G (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1(5):521–530PubMed Glover G (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1(5):521–530PubMed
3.
go back to reference Glover G, Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 field inhomogeneity correction. Magn Reson Med 18(2):371–383PubMed Glover G, Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 field inhomogeneity correction. Magn Reson Med 18(2):371–383PubMed
4.
go back to reference Hardy P, Hinks R (1995) Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique. J Magn Reson Imaging 5(2):181–185PubMed Hardy P, Hinks R (1995) Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique. J Magn Reson Imaging 5(2):181–185PubMed
5.
go back to reference Xiang Q, An L (1997) Water-fat imaging with direct phase encoding. J Magn Reson Imaging 7(6):1002–1015PubMed Xiang Q, An L (1997) Water-fat imaging with direct phase encoding. J Magn Reson Imaging 7(6):1002–1015PubMed
6.
go back to reference Rybicki F, Chung T, Reid J, Jaramillo D, Mulkern R, Ma J (2001) Fast three-point dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging. AJR Am J Roentgenol 177(5):1019–1023PubMed Rybicki F, Chung T, Reid J, Jaramillo D, Mulkern R, Ma J (2001) Fast three-point dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging. AJR Am J Roentgenol 177(5):1019–1023PubMed
7.
go back to reference Ma J, Singh S, Kumar A, Leeds N, Broemeling L (2002) Method for efficient fast spin echo Dixon imaging. Magn Reson Med 48(6):1021–1027PubMed Ma J, Singh S, Kumar A, Leeds N, Broemeling L (2002) Method for efficient fast spin echo Dixon imaging. Magn Reson Med 48(6):1021–1027PubMed
8.
go back to reference Reeder S, Wen Z, Yu H, Pineda A, Gold G, Markl M, Pelc N (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51(1):35–45PubMed Reeder S, Wen Z, Yu H, Pineda A, Gold G, Markl M, Pelc N (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51(1):35–45PubMed
9.
go back to reference Reeder S, Pineda A, Wen Z, Shimakawa A, Yu H, Brittain J, Gold G, Beaulieu C, Pelc N (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54(3):636–644PubMed Reeder S, Pineda A, Wen Z, Shimakawa A, Yu H, Brittain J, Gold G, Beaulieu C, Pelc N (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54(3):636–644PubMed
10.
go back to reference Pineda A, Reeder S, Wen Z, Pelc N (2005) Cramér–Rao bounds for three-point decomposition of water and fat. Magn Reson Med 54(3):625–635PubMed Pineda A, Reeder S, Wen Z, Pelc N (2005) Cramér–Rao bounds for three-point decomposition of water and fat. Magn Reson Med 54(3):625–635PubMed
11.
go back to reference Yu H, McKenzie C, Shimakawa A, Vu A, Brau A, Beatty P, Pineda A, Brittain J, Reeder S (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26(4):1153–1161PubMed Yu H, McKenzie C, Shimakawa A, Vu A, Brau A, Beatty P, Pineda A, Brittain J, Reeder S (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26(4):1153–1161PubMed
12.
go back to reference Yu H, Shimakawa A, McKenzie C, Brodsky E, Brittain J, Reeder S (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60(5):1122–1134PubMedPubMedCentral Yu H, Shimakawa A, McKenzie C, Brodsky E, Brittain J, Reeder S (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60(5):1122–1134PubMedPubMedCentral
13.
go back to reference Hernando D, Haldar J, Sutton B, Ma J, Kellman P, Liang Z (2008) Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 59(3):571–580PubMedPubMedCentral Hernando D, Haldar J, Sutton B, Ma J, Kellman P, Liang Z (2008) Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 59(3):571–580PubMedPubMedCentral
14.
go back to reference Hernando D, Kellman P, Haldar J, Liang Z (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63(1):79–90PubMedPubMedCentral Hernando D, Kellman P, Haldar J, Liang Z (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63(1):79–90PubMedPubMedCentral
15.
go back to reference Tsao J, Jiang Y (2013) Hierarchical IDEAL: fast, robust, and multiresolution separation of multiple chemical species from multiple echo times. Magn Reson Med 70(1):155–159PubMed Tsao J, Jiang Y (2013) Hierarchical IDEAL: fast, robust, and multiresolution separation of multiple chemical species from multiple echo times. Magn Reson Med 70(1):155–159PubMed
16.
go back to reference Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(4):341–344PubMed Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(4):341–344PubMed
17.
go back to reference Schricker A, Pauly J, Kurhanewicz J, Swanson M, Vigneron D (2001) Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med 46(6):1079–1087PubMed Schricker A, Pauly J, Kurhanewicz J, Swanson M, Vigneron D (2001) Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med 46(6):1079–1087PubMed
18.
go back to reference Krinsky G, Rofsky N, Weinreb J (1996) Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. AJR Am J Roentgenol 166(3):523–526PubMed Krinsky G, Rofsky N, Weinreb J (1996) Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. AJR Am J Roentgenol 166(3):523–526PubMed
19.
go back to reference Bloembergen N, Purcell E, Pound R (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73(7):679–712 Bloembergen N, Purcell E, Pound R (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73(7):679–712
20.
go back to reference Proctor W, Yu F (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 77:717 Proctor W, Yu F (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 77:717
21.
go back to reference Liu C, McKenzie C, Yu H, Brittain J, Reeder S (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 58:354–364PubMed Liu C, McKenzie C, Yu H, Brittain J, Reeder S (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 58:354–364PubMed
22.
go back to reference Ren J, Dimitrov I, Sherry A, Malloy C (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 49(9):2055–2062PubMedPubMedCentral Ren J, Dimitrov I, Sherry A, Malloy C (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 49(9):2055–2062PubMedPubMedCentral
23.
go back to reference Hamilton G, Smith DJ, Bydder M, Nayak K, Hu H (2011) MR properties of brown and white adipose tissues. J Magn Reson Imaging 34(2):468–473PubMedPubMedCentral Hamilton G, Smith DJ, Bydder M, Nayak K, Hu H (2011) MR properties of brown and white adipose tissues. J Magn Reson Imaging 34(2):468–473PubMedPubMedCentral
24.
go back to reference Reeder S, Hu H, Sirlin C (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014PubMedPubMedCentral Reeder S, Hu H, Sirlin C (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014PubMedPubMedCentral
25.
go back to reference Krssák M, Hofer H, Wrba F, Meyerspeer M, Brehm A, Lohninger A, Steindl-Munda P, Moser E, Ferenci P, Roden M (2010) Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1H magnetic resonance spectroscopy. Eur J Radiol 74(3):e60–e66PubMed Krssák M, Hofer H, Wrba F, Meyerspeer M, Brehm A, Lohninger A, Steindl-Munda P, Moser E, Ferenci P, Roden M (2010) Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1H magnetic resonance spectroscopy. Eur J Radiol 74(3):e60–e66PubMed
26.
go back to reference Hájek M, Dezortová M, Wagnerová D, Skoch A, Voska L, Hejlová I, Trunečka P (2011) MR spectroscopy as a tool for in vivo determination of steatosis in liver transplant recipients. MAGMA 24(5):297–304PubMed Hájek M, Dezortová M, Wagnerová D, Skoch A, Voska L, Hejlová I, Trunečka P (2011) MR spectroscopy as a tool for in vivo determination of steatosis in liver transplant recipients. MAGMA 24(5):297–304PubMed
27.
go back to reference Livingstone R, Begovatz P, Kahl S, Nowotny B, Strassburger K, Giani G, Bunke J, Roden M, Hwang J (2014) Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with 1H MRS. Magn Reson Mater Phy 27:397–405 Livingstone R, Begovatz P, Kahl S, Nowotny B, Strassburger K, Giani G, Bunke J, Roden M, Hwang J (2014) Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with 1H MRS. Magn Reson Mater Phy 27:397–405
28.
go back to reference Kim H, Taksali S, Dufour S, Befroy D, Goodman T, Petersen K, Shulman G, Caprio S, Constable R (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 59(3):521–527PubMedPubMedCentral Kim H, Taksali S, Dufour S, Befroy D, Goodman T, Petersen K, Shulman G, Caprio S, Constable R (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 59(3):521–527PubMedPubMedCentral
29.
go back to reference Kukuk G, Hittatiya K, Sprinkart A, Eggers H, Gieseke J, Block W, Moeller P, Willinek W, Spengler U, Trebicka J, Fischer H, Schild H, Träber F (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25(10):2869–2879PubMed Kukuk G, Hittatiya K, Sprinkart A, Eggers H, Gieseke J, Block W, Moeller P, Willinek W, Spengler U, Trebicka J, Fischer H, Schild H, Träber F (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25(10):2869–2879PubMed
30.
go back to reference Ishizaka K, Oyama N, Mito S, Sugimori H, Nakanishi M, Okuaki T, Shirato H, Terae S (2011) Comparison of 1H MR spectroscopy, 3-point DIXON, and multi-echo gradient echo for measuring hepatic fat fraction. Magn Reson Med Sci 10(1):41–48PubMed Ishizaka K, Oyama N, Mito S, Sugimori H, Nakanishi M, Okuaki T, Shirato H, Terae S (2011) Comparison of 1H MR spectroscopy, 3-point DIXON, and multi-echo gradient echo for measuring hepatic fat fraction. Magn Reson Med Sci 10(1):41–48PubMed
31.
go back to reference Hong C, Mamidipalli A, Hooker J, Hamilton G, Wolfson T, Chen D, Fazeli DS, Middleton M, Reeder S, Loomba R, Sirlin C (2018) MRI proton density fat fraction is robust across the biologically plausible range of triglyceride spectra in adults with nonalcoholic steatohepatitis. J Magn Reson Imaging 47(4):995–1002PubMed Hong C, Mamidipalli A, Hooker J, Hamilton G, Wolfson T, Chen D, Fazeli DS, Middleton M, Reeder S, Loomba R, Sirlin C (2018) MRI proton density fat fraction is robust across the biologically plausible range of triglyceride spectra in adults with nonalcoholic steatohepatitis. J Magn Reson Imaging 47(4):995–1002PubMed
32.
go back to reference Yokoo T, Serai S, Pirasteh A, Bashir M, Hamilton G, Hernando D, Hu H, Hetterich H, Kühn J, Kukuk G, Loomba R, Middleton M, Obuchowski N, Song J, Tang A, Wu X, Reeder S, Sirlin C (2018) Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 286(2):486–498PubMed Yokoo T, Serai S, Pirasteh A, Bashir M, Hamilton G, Hernando D, Hu H, Hetterich H, Kühn J, Kukuk G, Loomba R, Middleton M, Obuchowski N, Song J, Tang A, Wu X, Reeder S, Sirlin C (2018) Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 286(2):486–498PubMed
33.
go back to reference Bydder M, Hamilton G, de Rochefort L, Desai A, Heba E, Loomba R, Schwimmer J, Szeverenyi N, Sirlin C (2018) Sources of systematic error in proton density fat fraction (PDFF) quantification in the liver evaluated from magnitude images with different numbers of echoes. NMR Biomed 31(1):e3843 Bydder M, Hamilton G, de Rochefort L, Desai A, Heba E, Loomba R, Schwimmer J, Szeverenyi N, Sirlin C (2018) Sources of systematic error in proton density fat fraction (PDFF) quantification in the liver evaluated from magnitude images with different numbers of echoes. NMR Biomed 31(1):e3843
35.
go back to reference Smith D, Berglund J, Kullberg J, Ahlstrm HAM, Welch E (2013) Optimization of fat–water separation algorithm selection and options using image-based metrics with validation by ISMRM fat–water challenge datasets. In: Proceedings of international society for magnetic resonance in medicine 21, Salt-Lake City, USA, 2013 Smith D, Berglund J, Kullberg J, Ahlstrm HAM, Welch E (2013) Optimization of fat–water separation algorithm selection and options using image-based metrics with validation by ISMRM fat–water challenge datasets. In: Proceedings of international society for magnetic resonance in medicine 21, Salt-Lake City, USA, 2013
36.
go back to reference Tsao J, Jiang Y (2008) Hierarchical IDEAL—robust water–fat separation at high field by multiresolution field map estimation. In: Proceeding of the 16th Annual Meeting of ISMRM, Toronto, Canada Tsao J, Jiang Y (2008) Hierarchical IDEAL—robust water–fat separation at high field by multiresolution field map estimation. In: Proceeding of the 16th Annual Meeting of ISMRM, Toronto, Canada
37.
go back to reference An L, Xiang Q (2001) Chemical shift imaging with spectrum modeling. Magn Reson Med 46(1):126–130PubMed An L, Xiang Q (2001) Chemical shift imaging with spectrum modeling. Magn Reson Med 46(1):126–130PubMed
38.
go back to reference Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52(2):415–419PubMed Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52(2):415–419PubMed
39.
go back to reference Yu H, Reeder S, Shimakawa A, Brittain J, Pelc N (2005) Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med 54(4):1032–1039PubMed Yu H, Reeder S, Shimakawa A, Brittain J, Pelc N (2005) Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med 54(4):1032–1039PubMed
40.
go back to reference Lu W, Hargreaves B (2008) Multiresolution field map estimation using golden section search for water-fat separation. Magn Reson Med 60(1):236–244PubMed Lu W, Hargreaves B (2008) Multiresolution field map estimation using golden section search for water-fat separation. Magn Reson Med 60(1):236–244PubMed
41.
go back to reference Sharma S, Hu H, Nayak K (2012) Accelerated water-fat imaging using restricted subspace field map estimation and compressed sensing. Magn Reson Med 67(3):650–659PubMed Sharma S, Hu H, Nayak K (2012) Accelerated water-fat imaging using restricted subspace field map estimation and compressed sensing. Magn Reson Med 67(3):650–659PubMed
42.
go back to reference Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266 Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266
43.
go back to reference Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin D (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy—a rapid and accurate technique. Radiology 252(2):568–576PubMed Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin D (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy—a rapid and accurate technique. Radiology 252(2):568–576PubMed
44.
go back to reference Frahm J, Merboldt K-D, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508 Frahm J, Merboldt K-D, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508
45.
go back to reference Yu H, Shimakawa A, Hines C, McKenzie C, Hamilton G, Sirlin C, Brittain J, Reeder S (2011) Combination of complex-based and magnitude-based multiecho water–fat separation for accurate quantification of fat-fraction. Magn Reson Med 66(1):199–206PubMedPubMedCentral Yu H, Shimakawa A, Hines C, McKenzie C, Hamilton G, Sirlin C, Brittain J, Reeder S (2011) Combination of complex-based and magnitude-based multiecho water–fat separation for accurate quantification of fat-fraction. Magn Reson Med 66(1):199–206PubMedPubMedCentral
46.
go back to reference Pijnappel W, van den Boogaart A, de Beer R, van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134 Pijnappel W, van den Boogaart A, de Beer R, van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134
47.
go back to reference Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035 Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035
48.
go back to reference Cavassila S, Fenet B, van den Boogaart A, Rémy C, Briguet C, Graveron-Demilly D (1997) ER-Filter: a preprocessing technique to improve the performance of SVD-based quantitation methods. J Magn Reson Anal 3:87–92 Cavassila S, Fenet B, van den Boogaart A, Rémy C, Briguet C, Graveron-Demilly D (1997) ER-Filter: a preprocessing technique to improve the performance of SVD-based quantitation methods. J Magn Reson Anal 3:87–92
Metadata
Title
Low-level fat fraction quantification at 3 T: comparative study of different tools for water–fat reconstruction and MR spectroscopy
Authors
Radim Kořínek
Martin Gajdošík
Siegfried Trattnig
Zenon Starčuk Jr.
Martin Krššák
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 4/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00825-9

Other articles of this Issue 4/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2020 Go to the issue