Skip to main content
Top
Published in: European Radiology 6/2019

01-06-2019 | Magnetic Resonance Imaging | Musculoskeletal

Diffusion tensor imaging of the sciatic nerve in Charcot–Marie–Tooth disease type I patients: a prospective case–control study

Authors: Hyun Su Kim, Young Cheol Yoon, Byung-Ok Choi, Wook Jin, Jang Gyu Cha, Jae-Hun Kim

Published in: European Radiology | Issue 6/2019

Login to get access

Abstract

Objectives

This study aimed to evaluate whether diffusion tensor imaging (DTI) parameters and cross-sectional area (CSA) can differentiate between the sciatic nerve of Charcot–Marie–Tooth (CMT) disease type I (demyelinating form) patients and that of controls.

Methods

This prospective comparison study included 18 CMT type I patients and 18 age/sex-matched volunteers. Magnetic resonance imaging including DTI and axial T2-weighted Dixon sequence was performed for each subject. Region of interest analysis was independently performed by two radiologists on each side of the sciatic nerve at four levels: hamstring tendon origin (level 1), lesser trochanter of the femur (level 2), gluteus maximus tendon insertion (level 3), and mid-femur (level 4). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated. The CSA of the sciatic nerve bundle was measured using axial water-only image at each level. Comparisons of DTI parameters between the two groups were performed using the two-sample t test and Mann–Whitney U test. Interobserver agreement analysis was also conducted.

Results

Interobserver agreement was excellent for all DTI parameter analyses. FA was significantly lower at all four levels in CMT patients than controls. RD, MD, and CSA were significantly higher at all four levels in CMT patients. AD was significantly higher at level 2 in CMT patients.

Conclusion

DTI assessment of the sciatic nerve is reproducible and can discriminate the demyelinating nerve pathology of CMT type I patients from normal nerves. The CSA of the sciatic nerve is also a potential parameter for diagnosing nerve abnormality in CMT type I patients.

Key Points

• Diffusion tensor imaging parameters of the sciatic nerve at proximal to mid-femur level revealed significant differences between the Charcot–Marie–Tooth disease patients and controls.
• The cross-sectional area of the sciatic nerve was significantly larger in the Charcot–Marie–Tooth disease patients.
• Interobserver agreement was excellent (intraclass coefficient > 0.8) for all diffusion tensor imaging parameter analyses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667CrossRefPubMed Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667CrossRefPubMed
2.
go back to reference Bird TD, Ott J, Giblett ER, Chance PF, Sumi SM, Kraft GH (1983) Genetic linkage evidence for heterogeneity in Charcot-Marie-Tooth neuropathy (HMSN type I). Ann Neurol 14:679–684CrossRefPubMed Bird TD, Ott J, Giblett ER, Chance PF, Sumi SM, Kraft GH (1983) Genetic linkage evidence for heterogeneity in Charcot-Marie-Tooth neuropathy (HMSN type I). Ann Neurol 14:679–684CrossRefPubMed
3.
go back to reference Harding AE, Thomas PK (1980) The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103:259–280CrossRefPubMed Harding AE, Thomas PK (1980) The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103:259–280CrossRefPubMed
4.
go back to reference Cornett KMD, Menezes MP, Shy RR et al (2017) Natural history of Charcot-Marie-Tooth disease during childhood. Ann Neurol 82:353–359CrossRefPubMed Cornett KMD, Menezes MP, Shy RR et al (2017) Natural history of Charcot-Marie-Tooth disease during childhood. Ann Neurol 82:353–359CrossRefPubMed
5.
go back to reference Martinoli C, Schenone A, Bianchi S et al (2002) Sonography of the median nerve in Charcot-Marie-Tooth disease. AJR Am J Roentgenol 178:1553–1556CrossRefPubMed Martinoli C, Schenone A, Bianchi S et al (2002) Sonography of the median nerve in Charcot-Marie-Tooth disease. AJR Am J Roentgenol 178:1553–1556CrossRefPubMed
6.
go back to reference Noto Y, Shiga K, Tsuji Y et al (2015) Nerve ultrasound depicts peripheral nerve enlargement in patients with genetically distinct Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry 86:378–384CrossRefPubMed Noto Y, Shiga K, Tsuji Y et al (2015) Nerve ultrasound depicts peripheral nerve enlargement in patients with genetically distinct Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry 86:378–384CrossRefPubMed
7.
go back to reference Thawait SK, Chaudhry V, Thawait GK et al (2011) High-resolution MR neurography of diffuse peripheral nerve lesions. AJNR Am J Neuroradiol 32:1365–1372CrossRef Thawait SK, Chaudhry V, Thawait GK et al (2011) High-resolution MR neurography of diffuse peripheral nerve lesions. AJNR Am J Neuroradiol 32:1365–1372CrossRef
8.
go back to reference Morano JU, Russell WF (1986) Nerve root enlargement in Charcot-Marie-Tooth disease: CT appearance. Radiology 161:784CrossRefPubMed Morano JU, Russell WF (1986) Nerve root enlargement in Charcot-Marie-Tooth disease: CT appearance. Radiology 161:784CrossRefPubMed
9.
go back to reference Chung KW, Suh BC, Shy ME et al (2008) Different clinical and magnetic resonance imaging features between Charcot-Marie-Tooth disease type 1A and 2A. Neuromuscul Disord 18:610–618CrossRefPubMed Chung KW, Suh BC, Shy ME et al (2008) Different clinical and magnetic resonance imaging features between Charcot-Marie-Tooth disease type 1A and 2A. Neuromuscul Disord 18:610–618CrossRefPubMed
10.
go back to reference Gaeta M, Mileto A, Mazzeo A et al (2012) MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease. Skeletal Radiol 41:515–524CrossRefPubMed Gaeta M, Mileto A, Mazzeo A et al (2012) MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease. Skeletal Radiol 41:515–524CrossRefPubMed
11.
go back to reference Gallardo E, Claeys KG, Nelis E et al (2008) Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation. J Neurol 255:986–992CrossRefPubMed Gallardo E, Claeys KG, Nelis E et al (2008) Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation. J Neurol 255:986–992CrossRefPubMed
12.
go back to reference Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77CrossRefPubMedPubMedCentral Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77CrossRefPubMedPubMedCentral
13.
go back to reference Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRef Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRef
14.
go back to reference Kronlage M, Schwehr V, Schwarz D et al (2018) Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol 28:1801–1808CrossRefPubMed Kronlage M, Schwehr V, Schwarz D et al (2018) Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol 28:1801–1808CrossRefPubMed
15.
go back to reference Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMed Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMed
16.
go back to reference Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722CrossRef Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722CrossRef
17.
go back to reference Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436CrossRefPubMed Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436CrossRefPubMed
18.
go back to reference Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29:2805–2813CrossRefPubMedPubMedCentral Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29:2805–2813CrossRefPubMedPubMedCentral
19.
go back to reference Eguchi Y, Ohtori S, Orita S et al (2011) Quantitative evaluation and visualization of lumbar foraminal nerve root entrapment by using diffusion tensor imaging: preliminary results. AJNR Am J Neuroradiol 32:1824–1829CrossRefPubMed Eguchi Y, Ohtori S, Orita S et al (2011) Quantitative evaluation and visualization of lumbar foraminal nerve root entrapment by using diffusion tensor imaging: preliminary results. AJNR Am J Neuroradiol 32:1824–1829CrossRefPubMed
20.
go back to reference Wada K, Hashimoto T, Miyagi R, Sakai T, Sairyo K (2017) Diffusion tensor imaging and tractography of the sciatic nerve: assessment of fractional anisotropy and apparent diffusion coefficient values relative to the piriformis muscle, a preliminary study. Skeletal Radiol 46:309–314CrossRefPubMed Wada K, Hashimoto T, Miyagi R, Sakai T, Sairyo K (2017) Diffusion tensor imaging and tractography of the sciatic nerve: assessment of fractional anisotropy and apparent diffusion coefficient values relative to the piriformis muscle, a preliminary study. Skeletal Radiol 46:309–314CrossRefPubMed
21.
go back to reference Shi Y, Zong M, Xu X et al (2015) Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica. Eur J Radiol 84:690–695CrossRefPubMed Shi Y, Zong M, Xu X et al (2015) Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica. Eur J Radiol 84:690–695CrossRefPubMed
22.
go back to reference Budzik JF, Balbi V, Verclytte S, Pansini V, Le Thuc V, Cotten A (2014) Diffusion tensor imaging in musculoskeletal disorders. Radiographics 34:E56–E72CrossRefPubMed Budzik JF, Balbi V, Verclytte S, Pansini V, Le Thuc V, Cotten A (2014) Diffusion tensor imaging in musculoskeletal disorders. Radiographics 34:E56–E72CrossRefPubMed
23.
go back to reference Delaney H, Bencardino J, Rosenberg ZS (2014) Magnetic resonance neurography of the pelvis and lumbosacral plexus. Neuroimaging Clin N Am 24:127–150CrossRef Delaney H, Bencardino J, Rosenberg ZS (2014) Magnetic resonance neurography of the pelvis and lumbosacral plexus. Neuroimaging Clin N Am 24:127–150CrossRef
24.
go back to reference Barreto LC, Oliveira FS, Nunes PS et al (2016) Epidemiologic study of Charcot-Marie-Tooth disease: a systematic review. Neuroepidemiology 46:157–165CrossRefPubMed Barreto LC, Oliveira FS, Nunes PS et al (2016) Epidemiologic study of Charcot-Marie-Tooth disease: a systematic review. Neuroepidemiology 46:157–165CrossRefPubMed
25.
go back to reference Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193CrossRefPubMed Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193CrossRefPubMed
26.
go back to reference Morisaki S, Kawai Y, Umeda M et al (2011) In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging 33:535–542CrossRefPubMed Morisaki S, Kawai Y, Umeda M et al (2011) In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging 33:535–542CrossRefPubMed
27.
go back to reference Eppenberger P, Andreisek G, Chhabra A (2014) Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 24:245–256CrossRefPubMed Eppenberger P, Andreisek G, Chhabra A (2014) Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 24:245–256CrossRefPubMed
28.
29.
go back to reference Kakuda T, Fukuda H, Tanitame K et al (2011) Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology 53:955–960CrossRefPubMed Kakuda T, Fukuda H, Tanitame K et al (2011) Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology 53:955–960CrossRefPubMed
30.
go back to reference Wozniak JR, Lim KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30:762–774CrossRefPubMedPubMedCentral Wozniak JR, Lim KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30:762–774CrossRefPubMedPubMedCentral
31.
go back to reference Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140CrossRefPubMed Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140CrossRefPubMed
32.
go back to reference Smith TW, Bhawan J, Keller RB, DeGirolami U (1980) Charcot-Marie-Tooth disease associated with hypertrophic neuropathy: a neuropathologic study of two cases. J Neuropathol Exp Neurol 39:420–440CrossRefPubMed Smith TW, Bhawan J, Keller RB, DeGirolami U (1980) Charcot-Marie-Tooth disease associated with hypertrophic neuropathy: a neuropathologic study of two cases. J Neuropathol Exp Neurol 39:420–440CrossRefPubMed
33.
go back to reference Loy DN, Kim JH, Xie M, Schmidt RE, Trinkaus K, Song SK (2007) Diffusion tensor imaging predicts hyperacute spinal cord injury severity. J Neurotrauma 24:979–990CrossRefPubMed Loy DN, Kim JH, Xie M, Schmidt RE, Trinkaus K, Song SK (2007) Diffusion tensor imaging predicts hyperacute spinal cord injury severity. J Neurotrauma 24:979–990CrossRefPubMed
34.
go back to reference Kumar R, Macey PM, Woo MA, Alger JR, Harper RM (2008) Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res 64:275–280CrossRefPubMedPubMedCentral Kumar R, Macey PM, Woo MA, Alger JR, Harper RM (2008) Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res 64:275–280CrossRefPubMedPubMedCentral
35.
go back to reference Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M (2016) Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging 43:773–788CrossRef Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M (2016) Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging 43:773–788CrossRef
36.
go back to reference Vaeggemose M, Vaeth S, Pham M et al (2017) Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth type 1A. Muscle Nerve 56:E78–E84CrossRefPubMed Vaeggemose M, Vaeth S, Pham M et al (2017) Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth type 1A. Muscle Nerve 56:E78–E84CrossRefPubMed
37.
go back to reference Tanitame K, Iwakado Y, Akiyama Y et al (2012) Effect of age on the fractional anisotropy (FA) value of peripheral nerves and clinical significance of the age-corrected FA value for evaluating polyneuropathies. Neuroradiology 54:815–821CrossRefPubMed Tanitame K, Iwakado Y, Akiyama Y et al (2012) Effect of age on the fractional anisotropy (FA) value of peripheral nerves and clinical significance of the age-corrected FA value for evaluating polyneuropathies. Neuroradiology 54:815–821CrossRefPubMed
38.
go back to reference Kronlage M, Baumer P, Pitarokoili K et al (2017) Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol 264:1434–1443CrossRef Kronlage M, Baumer P, Pitarokoili K et al (2017) Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol 264:1434–1443CrossRef
39.
go back to reference Johnson D, Stevens KJ, Riley G, Shapiro L, Yoshioka H, Gold GE (2015) Approach to MR imaging of the elbow and wrist: technical aspects and innovation. Magn Reson Imaging Clin N Am 23:355–366CrossRefPubMedPubMedCentral Johnson D, Stevens KJ, Riley G, Shapiro L, Yoshioka H, Gold GE (2015) Approach to MR imaging of the elbow and wrist: technical aspects and innovation. Magn Reson Imaging Clin N Am 23:355–366CrossRefPubMedPubMedCentral
40.
go back to reference Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB (2018) Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 47:1171–1189CrossRef Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB (2018) Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 47:1171–1189CrossRef
41.
go back to reference Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18:671–679CrossRefPubMed Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18:671–679CrossRefPubMed
42.
go back to reference Yao X, Yu T, Liang B, Xia T, Huang Q, Zhuang S (2015) Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain. Korean J Radiol 16:410–418CrossRefPubMedPubMedCentral Yao X, Yu T, Liang B, Xia T, Huang Q, Zhuang S (2015) Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain. Korean J Radiol 16:410–418CrossRefPubMedPubMedCentral
Metadata
Title
Diffusion tensor imaging of the sciatic nerve in Charcot–Marie–Tooth disease type I patients: a prospective case–control study
Authors
Hyun Su Kim
Young Cheol Yoon
Byung-Ok Choi
Wook Jin
Jang Gyu Cha
Jae-Hun Kim
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5958-1

Other articles of this Issue 6/2019

European Radiology 6/2019 Go to the issue