Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

01-12-2022 | Magnetic Resonance Imaging | Research

Comparison of dynamic susceptibility contrast enhanced MR and FDG-PET brain studies in patients with Alzheimer’s disease and amnestic mild cognitive impairment

Authors: Aleksandra Wabik, Elżbieta Trypka, Joanna Bladowska, Mikołaj Statkiewicz, Marek Sąsiadek, Anna Zimny

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

The aim of this study was to compare Dynamic Susceptibility Contrast Enhanced MRI (DSC-MRI) and PET with [18F]flurodeoxyglucose (FDG-PET) in the diagnosis of Alzheimer’s Disease (AD) and amnestic Mild Cognitive Impairment (aMCI).

Methods

Twenty-seven age-and sex-matched patients with AD, 39 with aMCI and 16 controls underwent brain DSC-MRI followed by FDG-PET. Values of relative Cerebral Blood Volume (rCBV) and rCBV z-scores from frontal, temporal, parietal and PCG cortices were correlated with the rate of glucose metabolism from PET. Sensitivity, specificity and accuracy of DSC-MRI and FDG-PET in the diagnosis of AD and aMCI were assessed and compared.

Results

In AD, hypoperfusion was found within all the examined locations, while in aMCI in both parietal and temporal cortices and left PCG. FDG-PET showed the greatest hypometabolism in parietal, temporal and left PCG regions in both AD and aMCI. FDG-PET was more accurate in distinguishing aMCI from the controls than DSC-MRI. In the AD and combined group (AD + aMCI) there were numerous correlations between DSC-MRI and FDG-PET results.

Conclusions

In AD the patterns of hypoperfusion and glucose hypometabolism are similar, thus DSC-MRI may be a competitive method to FDG-PET. FDG-PET is a more accurate method in the diagnosis of aMCI.
Literature
1.
go back to reference Alzheimer’s Association Report. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11:332–84.CrossRef Alzheimer’s Association Report. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11:332–84.CrossRef
2.
3.
go back to reference Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.CrossRefPubMed Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.CrossRefPubMed
4.
go back to reference Roy S, Rauk A. Alzheimer’s disease and the ‘ABSENT’ hypothesis: mechanism for amyloid β endothelial and neuronal toxicity. Med Hypotheses. 2005;65(1):123–37.CrossRefPubMed Roy S, Rauk A. Alzheimer’s disease and the ‘ABSENT’ hypothesis: mechanism for amyloid β endothelial and neuronal toxicity. Med Hypotheses. 2005;65(1):123–37.CrossRefPubMed
5.
go back to reference Huang CW, Hsu SW, Chang Y-T, et al. Cerebral perfusion insufficiency and relationships with cognitive deficits in Alzheimer’s disease: a multiparametric neuroimaging study. Sci Rep. 2018;8(1):1541.CrossRefPubMedPubMedCentral Huang CW, Hsu SW, Chang Y-T, et al. Cerebral perfusion insufficiency and relationships with cognitive deficits in Alzheimer’s disease: a multiparametric neuroimaging study. Sci Rep. 2018;8(1):1541.CrossRefPubMedPubMedCentral
8.
go back to reference Koedam LM, Barnes J, Bartlett JW, et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically confirmed Alzheimer’s disease. Neurobiol Aging. 2012;33(3):627.PubMedPubMedCentral Koedam LM, Barnes J, Bartlett JW, et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically confirmed Alzheimer’s disease. Neurobiol Aging. 2012;33(3):627.PubMedPubMedCentral
9.
go back to reference Visser PJ, Verhey VRJ, Hofman P, Scheltens P, Jolles J. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry. 2002;72:491–7.PubMedPubMedCentral Visser PJ, Verhey VRJ, Hofman P, Scheltens P, Jolles J. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry. 2002;72:491–7.PubMedPubMedCentral
10.
go back to reference Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-Searching for a practical approach. PLoS ONE. 2018;13(1):e0191341.CrossRefPubMedPubMedCentral Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-Searching for a practical approach. PLoS ONE. 2018;13(1):e0191341.CrossRefPubMedPubMedCentral
11.
go back to reference Ge Y, Law M, Johnson G, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539–47.PubMedPubMedCentral Ge Y, Law M, Johnson G, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539–47.PubMedPubMedCentral
12.
go back to reference Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol. 2001;22(6):1030–6.PubMedPubMedCentral Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol. 2001;22(6):1030–6.PubMedPubMedCentral
13.
go back to reference Harris GJ, Lewis RF, Satlin A, et al. Dynamic susceptibility contrast MR imaging MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR Am J Neuroradiol. 1998;19(9):1727–32.PubMedPubMedCentral Harris GJ, Lewis RF, Satlin A, et al. Dynamic susceptibility contrast MR imaging MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR Am J Neuroradiol. 1998;19(9):1727–32.PubMedPubMedCentral
14.
go back to reference Mattia D, Babilon F, Romigi A, et al. Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin Neurophysiol. 2003;114(7):1210–6.CrossRefPubMed Mattia D, Babilon F, Romigi A, et al. Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin Neurophysiol. 2003;114(7):1210–6.CrossRefPubMed
15.
go back to reference Gonzalez RG, Fischman AJ, Guimaraes AR, et al. Functional MR in the evaluation of dementia: correlation of abnormal dynamic cerebral blood volume measurements with changes in cerebral metabolism on positron emission tomography with fludeoxyglucose. Am J Neuroradiol. 1995;16(9):1763–70.PubMed Gonzalez RG, Fischman AJ, Guimaraes AR, et al. Functional MR in the evaluation of dementia: correlation of abnormal dynamic cerebral blood volume measurements with changes in cerebral metabolism on positron emission tomography with fludeoxyglucose. Am J Neuroradiol. 1995;16(9):1763–70.PubMed
16.
go back to reference Maas LC, Harris GJ, Saltin A, English CD, Lewis RF, Renshaw PF. Regional cerebral blood volume measured by dynamic susceptibility contrast MR imaging in Alzheimer’s disease: a principal components analysis. JMRI. 1997;7:215–9.CrossRefPubMed Maas LC, Harris GJ, Saltin A, English CD, Lewis RF, Renshaw PF. Regional cerebral blood volume measured by dynamic susceptibility contrast MR imaging in Alzheimer’s disease: a principal components analysis. JMRI. 1997;7:215–9.CrossRefPubMed
17.
go back to reference Zimny A, Szewczyk P, Trypka E, et al. Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. J Alzheimers Dis. 2011;27:591–601.CrossRefPubMed Zimny A, Szewczyk P, Trypka E, et al. Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. J Alzheimers Dis. 2011;27:591–601.CrossRefPubMed
18.
go back to reference Zimny A, Bladowska J, Macioszek A, et al. Evaluation of the posterior cingulate region with FDG-PET and advanced MR techniques in patients with amnestic mild cognitive impairment: comparison of the methods. J Alzheimers Dis. 2015;44(1):329–38.CrossRefPubMed Zimny A, Bladowska J, Macioszek A, et al. Evaluation of the posterior cingulate region with FDG-PET and advanced MR techniques in patients with amnestic mild cognitive impairment: comparison of the methods. J Alzheimers Dis. 2015;44(1):329–38.CrossRefPubMed
19.
go back to reference Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486–510.CrossRefPubMed Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486–510.CrossRefPubMed
20.
go back to reference Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease and other dementias. J Nucl Med. 2008;49:390–8.CrossRefPubMed Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease and other dementias. J Nucl Med. 2008;49:390–8.CrossRefPubMed
21.
go back to reference Demetriades A. Functional neuroimaging in Alzheimer ‘s type dementia. J Neurol Sci. 2002;203–204:247–51.CrossRefPubMed Demetriades A. Functional neuroimaging in Alzheimer ‘s type dementia. J Neurol Sci. 2002;203–204:247–51.CrossRefPubMed
22.
go back to reference Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607.PubMed Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607.PubMed
24.
go back to reference Brandon JA, Farmer BC, Wiliams HC, Johnson LA. APOE and Alzheimer’s disease: neuroimaging of metabolic and cerebrovascular dysfunction. Front Aging Neurosci. 2018;10:180.CrossRefPubMedPubMedCentral Brandon JA, Farmer BC, Wiliams HC, Johnson LA. APOE and Alzheimer’s disease: neuroimaging of metabolic and cerebrovascular dysfunction. Front Aging Neurosci. 2018;10:180.CrossRefPubMedPubMedCentral
25.
go back to reference Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41:1920–8.PubMed Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41:1920–8.PubMed
26.
27.
go back to reference Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated 18F-FDG PET scores a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated 18F-FDG PET scores a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed
28.
go back to reference Marshall GA, Monserratt L, Harwood D, Mandelkern M, Cummings JL, Sultzer DL. Positron emission tomography metabolic correlates of apathy in Alzheimer disease. Arch Neurol. 2007;64(7):1015–20.CrossRefPubMed Marshall GA, Monserratt L, Harwood D, Mandelkern M, Cummings JL, Sultzer DL. Positron emission tomography metabolic correlates of apathy in Alzheimer disease. Arch Neurol. 2007;64(7):1015–20.CrossRefPubMed
29.
go back to reference Talarich J, Tournoux P. Co-planar stereotaxtic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. New York: Thieme Medical Press; 1988. Talarich J, Tournoux P. Co-planar stereotaxtic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. New York: Thieme Medical Press; 1988.
30.
go back to reference Soonawala D, Amin T, Ebmeier KP, et al. Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage. 2002;17:1193–2202.CrossRefPubMed Soonawala D, Amin T, Ebmeier KP, et al. Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage. 2002;17:1193–2202.CrossRefPubMed
31.
go back to reference Renshaw PF, Levin JM, Kaufman MJ, Ross MH, Lewis RF, Harris GJ. Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise. Eur Radiol. 1997;7(5):216–21.CrossRefPubMed Renshaw PF, Levin JM, Kaufman MJ, Ross MH, Lewis RF, Harris GJ. Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise. Eur Radiol. 1997;7(5):216–21.CrossRefPubMed
32.
go back to reference Eskildsen SF, Gyldensted L, Nagenthiraja K, et al. Increased cortical capillary transit time heterogeneity in Alzheimer’s disease: a DSC-MRI perfusion study. Neurobiol Aging. 2017;50:107–18.CrossRefPubMed Eskildsen SF, Gyldensted L, Nagenthiraja K, et al. Increased cortical capillary transit time heterogeneity in Alzheimer’s disease: a DSC-MRI perfusion study. Neurobiol Aging. 2017;50:107–18.CrossRefPubMed
33.
go back to reference Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250(3):856–66.CrossRefPubMedPubMedCentral Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250(3):856–66.CrossRefPubMedPubMedCentral
34.
go back to reference Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5):1–93. Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5):1–93.
35.
go back to reference Gupta Y, Lama RK, Kwon GR, The Alzheimer’s Disease Neuroimaging Initiative. Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci. 2019;13:72.CrossRefPubMedPubMedCentral Gupta Y, Lama RK, Kwon GR, The Alzheimer’s Disease Neuroimaging Initiative. Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci. 2019;13:72.CrossRefPubMedPubMedCentral
36.
go back to reference O’Brien J, Firbank MJ, Davison C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55(12):1959–65.CrossRefPubMed O’Brien J, Firbank MJ, Davison C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55(12):1959–65.CrossRefPubMed
37.
go back to reference Newberg AB, Arnold SE, Wintering N, Rovner BW, Alavi A. Initial clinical comparison of 18F-Florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls. Nucl Med. 2012;53:902–7.CrossRef Newberg AB, Arnold SE, Wintering N, Rovner BW, Alavi A. Initial clinical comparison of 18F-Florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls. Nucl Med. 2012;53:902–7.CrossRef
38.
go back to reference De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001;22:529–39.CrossRefPubMed De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001;22:529–39.CrossRefPubMed
39.
go back to reference Perani D. FDG PET and cognitive symptoms of dementia. Clin Transl Imaging. 2013;1(4):247–60.CrossRef Perani D. FDG PET and cognitive symptoms of dementia. Clin Transl Imaging. 2013;1(4):247–60.CrossRef
40.
go back to reference Huda A, Kartamihardja AHS, Darmawan B, Budiawan H, Wiwie M. Metabolic activity value in the posterior cingulate cortex using F-18 fluorodeoxyglucose positron emission tomography brain to predict the severity of Alzheimer’s. World J Nucl Med. 2017;16(2):108–13.CrossRefPubMedPubMedCentral Huda A, Kartamihardja AHS, Darmawan B, Budiawan H, Wiwie M. Metabolic activity value in the posterior cingulate cortex using F-18 fluorodeoxyglucose positron emission tomography brain to predict the severity of Alzheimer’s. World J Nucl Med. 2017;16(2):108–13.CrossRefPubMedPubMedCentral
41.
go back to reference Beyer L, Schnabel J, Kazmierczak P, et al. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer’s disease. NeuroImage Clinical. 2019;24: 101949.CrossRefPubMedPubMedCentral Beyer L, Schnabel J, Kazmierczak P, et al. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer’s disease. NeuroImage Clinical. 2019;24: 101949.CrossRefPubMedPubMedCentral
42.
go back to reference Fällmar D, Haller S, Lilja J, Danfors T, et al. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET. Eur Radiol. 2017;27:4237–46.CrossRefPubMedPubMedCentral Fällmar D, Haller S, Lilja J, Danfors T, et al. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET. Eur Radiol. 2017;27:4237–46.CrossRefPubMedPubMedCentral
43.
go back to reference Musiek ES, Chen Y, Korczykowski M, et al. Direct comparison of FDG-PET and ASL-MRI in Alzheimer’s disease. Alzheimers Dement. 2012;8(1):51–9.CrossRefPubMed Musiek ES, Chen Y, Korczykowski M, et al. Direct comparison of FDG-PET and ASL-MRI in Alzheimer’s disease. Alzheimers Dement. 2012;8(1):51–9.CrossRefPubMed
44.
go back to reference Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234(3):851–9.CrossRefPubMed Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234(3):851–9.CrossRefPubMed
45.
go back to reference Riederer I, Bohn KP, Preibisch Ch, et al. Alzheimer disease and mild cognitive impairment: integrated pulsed arterial spin-labeling MRI and 18F-FDG PET. Radiology. 2018;288:198–206.CrossRefPubMed Riederer I, Bohn KP, Preibisch Ch, et al. Alzheimer disease and mild cognitive impairment: integrated pulsed arterial spin-labeling MRI and 18F-FDG PET. Radiology. 2018;288:198–206.CrossRefPubMed
Metadata
Title
Comparison of dynamic susceptibility contrast enhanced MR and FDG-PET brain studies in patients with Alzheimer’s disease and amnestic mild cognitive impairment
Authors
Aleksandra Wabik
Elżbieta Trypka
Joanna Bladowska
Mikołaj Statkiewicz
Marek Sąsiadek
Anna Zimny
Publication date
01-12-2022

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine