Skip to main content
Top
Published in: Neuroradiology 10/2021

01-10-2021 | Magnetic Resonance Imaging | Diagnostic Neuroradiology

Clinical safety of intracranial EEG electrodes in MRI at 1.5 T and 3 T: a single-center experience and literature review

Published in: Neuroradiology | Issue 10/2021

Login to get access

Abstract

Purpose

Intracranial electroencephalography (EEG) can be a critical part of presurgical evaluation for drug resistant epilepsy. With the increasing use of intracranial EEG, the safety of these electrodes in the magnetic resonance imaging (MRI) environment remains a concern, particularly at higher field strengths. However, no studies have reported the MRI safety experience of intracranial electrodes at 3 T. We report an MRI safety review of patients with intracranial electrodes at 1.5 and 3 T.

Methods

One hundred and sixty-five consecutive admissions for intracranial EEG monitoring were reviewed. A total of 184 MRI scans were performed on 135 patients over 140 admissions. These included 118 structural MRI studies at 1.5 T and 66 functional MRI studies at 3 T. The magnetic resonance (MR) protocols avoided the use of high specific energy absorption rate sequences that could result in electrode heating. The intracranial implantations included 114 depth, 15 subdural, and 11 combined subdural and depth electrodes. Medical records were reviewed for patient-reported complications and radiologic complications related to these studies. Pre-implantation, post-implantation, and post-explantation imaging studies were reviewed for potential complications.

Results

No adverse events or complications were seen during or after MRI scanning at 1.5 or 3 T apart from those attributed to electrode implantation. There was also no clinical or imaging evidence of worsening of pre-existing implantation-related complications after MR imaging.

Conclusion

No clinical or radiographic complications are seen when performing MRI scans at 1.5 or 3 T on patients with implanted intracranial EEG electrodes while avoiding high specific energy absorption rate sequences.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zumsteg D, Wieser HG (2000) Presurgical evaluation: current role of invasive EEG. Epilepsia. 41(Suppl 3):S55–S60CrossRef Zumsteg D, Wieser HG (2000) Presurgical evaluation: current role of invasive EEG. Epilepsia. 41(Suppl 3):S55–S60CrossRef
2.
go back to reference Kovac S, Vakharia VN, Scott C, Diehl B (2017) Invasive epilepsy surgery evaluation. Seizure. 44:125–136CrossRef Kovac S, Vakharia VN, Scott C, Diehl B (2017) Invasive epilepsy surgery evaluation. Seizure. 44:125–136CrossRef
3.
go back to reference Yang AI, Wang X, Doyle WK, Halgren E, Carlson C, Belcher TL et al (2012) Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage. 63(1):157–165CrossRef Yang AI, Wang X, Doyle WK, Halgren E, Carlson C, Belcher TL et al (2012) Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage. 63(1):157–165CrossRef
4.
go back to reference Katz JS, Abel TJ (2019) Stereoelectroencephalography versus subdural electrodes for localization of the epileptogenic zone: what is the evidence? Neurotherapeutics. 16(1):59–66CrossRef Katz JS, Abel TJ (2019) Stereoelectroencephalography versus subdural electrodes for localization of the epileptogenic zone: what is the evidence? Neurotherapeutics. 16(1):59–66CrossRef
5.
go back to reference Hunter JD, Hanan DM, Singer BF, Shaikh S, Brubaker KA, Hecox KE et al (2005) Locating chronically implanted subdural electrodes using surface reconstruction. Clin Neurophysiol 116(8):1984–1987CrossRef Hunter JD, Hanan DM, Singer BF, Shaikh S, Brubaker KA, Hecox KE et al (2005) Locating chronically implanted subdural electrodes using surface reconstruction. Clin Neurophysiol 116(8):1984–1987CrossRef
6.
go back to reference Sebastiano F, Di Gennaro G, Esposito V, Picardi A, Morace R, Sparano A et al (2006) A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy. Clin Neurophysiol 117(2):341–347CrossRef Sebastiano F, Di Gennaro G, Esposito V, Picardi A, Morace R, Sparano A et al (2006) A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy. Clin Neurophysiol 117(2):341–347CrossRef
7.
go back to reference Boucousis SM, Beers CA, Cunningham CJ, Gaxiola-Valdez I, Pittman DJ, Goodyear BG et al (2012) Feasibility of an intracranial EEG-fMRI protocol at 3 T: risk assessment and image quality. Neuroimage. 63(3):1237–1248CrossRef Boucousis SM, Beers CA, Cunningham CJ, Gaxiola-Valdez I, Pittman DJ, Goodyear BG et al (2012) Feasibility of an intracranial EEG-fMRI protocol at 3 T: risk assessment and image quality. Neuroimage. 63(3):1237–1248CrossRef
8.
go back to reference Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57(5):E1063 discussion ECrossRef Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57(5):E1063 discussion ECrossRef
9.
go back to reference Zrinzo L, Yoshida F, Hariz MI, Thornton J, Foltynie T, Yousry TA et al (2011) Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. World Neurosurg 76(1-2):164–172CrossRef Zrinzo L, Yoshida F, Hariz MI, Thornton J, Foltynie T, Yousry TA et al (2011) Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. World Neurosurg 76(1-2):164–172CrossRef
10.
go back to reference Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy A, Allen PJ et al (2008) Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating. J Magn Reson Imaging 28(5):1233–1244CrossRef Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy A, Allen PJ et al (2008) Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating. J Magn Reson Imaging 28(5):1233–1244CrossRef
11.
go back to reference Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy AW, Ordidge RJ et al (2010) Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study. Neuroimage. 49(1):379–390CrossRef Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy AW, Ordidge RJ et al (2010) Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study. Neuroimage. 49(1):379–390CrossRef
12.
go back to reference Beers CA, Williams RJ, Gaxiola-Valdez I, Pittman DJ, Kang AT, Aghakhani Y et al (2015) Patient specific hemodynamic response functions associated with interictal discharges recorded via simultaneous intracranial EEG-fMRI. Hum Brain Mapp 36(12):5252–5264CrossRef Beers CA, Williams RJ, Gaxiola-Valdez I, Pittman DJ, Kang AT, Aghakhani Y et al (2015) Patient specific hemodynamic response functions associated with interictal discharges recorded via simultaneous intracranial EEG-fMRI. Hum Brain Mapp 36(12):5252–5264CrossRef
13.
go back to reference Aghakhani Y, Beers CA, Pittman DJ, Gaxiola-Valdez I, Goodyear BG, Federico P (2015) Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T. Neuroimage Clin 7:755–763CrossRef Aghakhani Y, Beers CA, Pittman DJ, Gaxiola-Valdez I, Goodyear BG, Federico P (2015) Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T. Neuroimage Clin 7:755–763CrossRef
14.
go back to reference Cunningham CB, Goodyear BG, Badawy R, Zaamout F, Pittman DJ, Beers CA et al (2012) Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans. Epilepsia. 53(9):1636–1648CrossRef Cunningham CB, Goodyear BG, Badawy R, Zaamout F, Pittman DJ, Beers CA et al (2012) Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans. Epilepsia. 53(9):1636–1648CrossRef
15.
go back to reference Chaudhary UJ, Centeno M, Thornton RC, Rodionov R, Vulliemoz S, McEvoy AW et al (2016) Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI. Neuroimage Clin 11:486–493CrossRef Chaudhary UJ, Centeno M, Thornton RC, Rodionov R, Vulliemoz S, McEvoy AW et al (2016) Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI. Neuroimage Clin 11:486–493CrossRef
16.
go back to reference Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG-fMRI in humans: protocol considerations and data quality. Neuroimage. 63(1):301–309CrossRef Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG-fMRI in humans: protocol considerations and data quality. Neuroimage. 63(1):301–309CrossRef
17.
go back to reference Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC et al (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage. 54(1):182–190CrossRef Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC et al (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage. 54(1):182–190CrossRef
18.
go back to reference Murta T, Hu L, Tierney TM, Chaudhary UJ, Walker MC, Carmichael DW et al (2016) A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. Neuroimage. 142:371–380CrossRef Murta T, Hu L, Tierney TM, Chaudhary UJ, Walker MC, Carmichael DW et al (2016) A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. Neuroimage. 142:371–380CrossRef
19.
go back to reference Peedicail JS, Almohawes A, Hader W, Starreveld Y, Singh S, Josephson CB et al (2020) Outcomes of stereoelectroencephalography exploration at an epilepsy surgery center. Acta Neurol Scand 141(6):463–472CrossRef Peedicail JS, Almohawes A, Hader W, Starreveld Y, Singh S, Josephson CB et al (2020) Outcomes of stereoelectroencephalography exploration at an epilepsy surgery center. Acta Neurol Scand 141(6):463–472CrossRef
20.
go back to reference Fountas KN (2011) Implanted subdural electrodes: safety issues and complication avoidance. Neurosurg Clin N Am 22(4):519–531 viiCrossRef Fountas KN (2011) Implanted subdural electrodes: safety issues and complication avoidance. Neurosurg Clin N Am 22(4):519–531 viiCrossRef
21.
go back to reference Schmidt RF, Wu C, Lang MJ, Soni P, Williams KA Jr, Boorman DW et al (2016) Complications of subdural and depth electrodes in 269 patients undergoing 317 procedures for invasive monitoring in epilepsy. Epilepsia. 57(10):1697–1708CrossRef Schmidt RF, Wu C, Lang MJ, Soni P, Williams KA Jr, Boorman DW et al (2016) Complications of subdural and depth electrodes in 269 patients undergoing 317 procedures for invasive monitoring in epilepsy. Epilepsia. 57(10):1697–1708CrossRef
22.
go back to reference Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798CrossRef Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798CrossRef
23.
go back to reference Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14(2):409–414CrossRef Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14(2):409–414CrossRef
24.
go back to reference Serletis D, Bulacio J, Bingaman W, Najm I, Gonzalez-Martinez J (2014) The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 121(5):1239–1246CrossRef Serletis D, Bulacio J, Bingaman W, Najm I, Gonzalez-Martinez J (2014) The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 121(5):1239–1246CrossRef
25.
go back to reference Bhattacharyya PK, Mullin J, Lee BS, Gonzalez-Martinez JA, Jones SE (2017) Safety of externally stimulated intracranial electrodes during functional MRI at 1.5 T. Magn Reson Imaging 38:182–188CrossRef Bhattacharyya PK, Mullin J, Lee BS, Gonzalez-Martinez JA, Jones SE (2017) Safety of externally stimulated intracranial electrodes during functional MRI at 1.5 T. Magn Reson Imaging 38:182–188CrossRef
26.
go back to reference Zhang J, Wilson CL, Levesque MF, Behnke EJ, Lufkin RB (1993) Temperature changes in nickel-chromium intracranial depth electrodes during MR scanning. AJNR Am J Neuroradiol 14(2):497–500PubMedPubMedCentral Zhang J, Wilson CL, Levesque MF, Behnke EJ, Lufkin RB (1993) Temperature changes in nickel-chromium intracranial depth electrodes during MR scanning. AJNR Am J Neuroradiol 14(2):497–500PubMedPubMedCentral
27.
go back to reference Ciumas C, Schaefers G, Bouvard S, Tailhades E, Perrin E, Comte JC et al (2014) A phantom and animal study of temperature changes during fMRI with intracerebral depth electrodes. Epilepsy Res 108(1):57–65CrossRef Ciumas C, Schaefers G, Bouvard S, Tailhades E, Perrin E, Comte JC et al (2014) A phantom and animal study of temperature changes during fMRI with intracerebral depth electrodes. Epilepsy Res 108(1):57–65CrossRef
28.
go back to reference Duckwiler GR, Levesque M, Wilson CL, Behnke E, Babb TL, Lufkin R (1990) Imaging of MR-compatible intracerebral depth electrodes. AJNR Am J Neuroradiol 11(2):353–354PubMedPubMedCentral Duckwiler GR, Levesque M, Wilson CL, Behnke E, Babb TL, Lufkin R (1990) Imaging of MR-compatible intracerebral depth electrodes. AJNR Am J Neuroradiol 11(2):353–354PubMedPubMedCentral
29.
go back to reference Kratimenos GP, Thomas DG, Shorvon SD, Fish DR (1993) Stereotactic insertion of intracerebral electrodes in the investigation of epilepsy. Br J Neurosurg 7(1):45–52CrossRef Kratimenos GP, Thomas DG, Shorvon SD, Fish DR (1993) Stereotactic insertion of intracerebral electrodes in the investigation of epilepsy. Br J Neurosurg 7(1):45–52CrossRef
30.
go back to reference Meiners LC, Bakker CJ, van Rijen PC, van Veelen CW, van Huffelen AC, van Dieren A et al (1996) Fast spin-echo MR of contact points on implanted intracerebral stainless steel multicontact electrodes. AJNR Am J Neuroradiol 17(10):1815–1819PubMedPubMedCentral Meiners LC, Bakker CJ, van Rijen PC, van Veelen CW, van Huffelen AC, van Dieren A et al (1996) Fast spin-echo MR of contact points on implanted intracerebral stainless steel multicontact electrodes. AJNR Am J Neuroradiol 17(10):1815–1819PubMedPubMedCentral
31.
go back to reference Brooks ML, O’Connor MJ, Sperling MR, Mayer DP (1992) Magnetic resonance imaging in localization of EEG depth electrodes for seizure monitoring. Epilepsia. 33(5):888–891CrossRef Brooks ML, O’Connor MJ, Sperling MR, Mayer DP (1992) Magnetic resonance imaging in localization of EEG depth electrodes for seizure monitoring. Epilepsia. 33(5):888–891CrossRef
32.
go back to reference Davis LM, Spencer DD, Spencer SS, Bronen RA (1999) MR imaging of implanted depth and subdural electrodes: is it safe? Epilepsy Res 35(2):95–98CrossRef Davis LM, Spencer DD, Spencer SS, Bronen RA (1999) MR imaging of implanted depth and subdural electrodes: is it safe? Epilepsy Res 35(2):95–98CrossRef
33.
go back to reference Ross DA, Brunberg JA, Drury I, Henry TR (1996) Intracerebral depth electrode monitoring in partial epilepsy: the morbidity and efficacy of placement using magnetic resonance image-guided stereotactic surgery. Neurosurgery. 39(2):327–333 discussion 33-4CrossRef Ross DA, Brunberg JA, Drury I, Henry TR (1996) Intracerebral depth electrode monitoring in partial epilepsy: the morbidity and efficacy of placement using magnetic resonance image-guided stereotactic surgery. Neurosurgery. 39(2):327–333 discussion 33-4CrossRef
34.
go back to reference Cordova JE, Rowe RE, Furman MD, Smith JR, Murro AM (1994) A method for imaging of intracranial EEG electrodes using magnetic resonance imaging. Comput Biomed Res 27(5):337–341CrossRef Cordova JE, Rowe RE, Furman MD, Smith JR, Murro AM (1994) A method for imaging of intracranial EEG electrodes using magnetic resonance imaging. Comput Biomed Res 27(5):337–341CrossRef
35.
go back to reference Al-Otaibi FA, Alabousi A, Burneo JG, Lee DH, Parrent AG, Steven DA (2010) Clinically silent magnetic resonance imaging findings after subdural strip electrode implantation. J Neurosurg 112(2):461–466CrossRef Al-Otaibi FA, Alabousi A, Burneo JG, Lee DH, Parrent AG, Steven DA (2010) Clinically silent magnetic resonance imaging findings after subdural strip electrode implantation. J Neurosurg 112(2):461–466CrossRef
36.
go back to reference Georgi JC, Stippich C, Tronnier VM, Heiland S (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388CrossRef Georgi JC, Stippich C, Tronnier VM, Heiland S (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388CrossRef
37.
go back to reference Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19(3):267–294CrossRef Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19(3):267–294CrossRef
38.
go back to reference 2182-02a A (2007) Standard test method for meausrement of radio frequency induced heating near implants during magnetic resonance imaging. Committee F04 on Medical and Surgical Materials and Devices, Subcommittee F04.15 on Material Test Methods. ASTM International, West Conshohocken 2182-02a A (2007) Standard test method for meausrement of radio frequency induced heating near implants during magnetic resonance imaging. Committee F04 on Medical and Surgical Materials and Devices, Subcommittee F04.15 on Material Test Methods. ASTM International, West Conshohocken
39.
go back to reference Goc J, Liu JY, Sisodiya SM (2014) Thom M. A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy. Eur J Neurosci 39(12):2151–2162CrossRef Goc J, Liu JY, Sisodiya SM (2014) Thom M. A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy. Eur J Neurosci 39(12):2151–2162CrossRef
40.
go back to reference Fong JS, Alexopoulos AV, Bingaman WE, Gonzalez-Martinez J, Prayson RA (2012) Pathologic findings associated with invasive EEG monitoring for medically intractable epilepsy. Am J Clin Pathol 138(4):506–510CrossRef Fong JS, Alexopoulos AV, Bingaman WE, Gonzalez-Martinez J, Prayson RA (2012) Pathologic findings associated with invasive EEG monitoring for medically intractable epilepsy. Am J Clin Pathol 138(4):506–510CrossRef
Metadata
Title
Clinical safety of intracranial EEG electrodes in MRI at 1.5 T and 3 T: a single-center experience and literature review
Publication date
01-10-2021
Published in
Neuroradiology / Issue 10/2021
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-021-02661-7

Other articles of this Issue 10/2021

Neuroradiology 10/2021 Go to the issue