Skip to main content
Top

Open Access 18-03-2024 | Macular Degeneration | Original Paper

Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization

Authors: Gideon Obasanmi, Manjosh Uppal, Jing Z. Cui, Jeanne Xi, Myeong Jin Ju, Jun Song, Eleanor To, Siqi Li, Wania Khan, Darian Cheng, John Zhu, Lyden Irani, Isa Samad, Julie Zhu, Hyung-Suk Yoo, Alexandre Aubert, Jonathan Stoddard, Martha Neuringer, David J. Granville, Joanne A. Matsubara

Published in: Angiogenesis

Login to get access

Abstract

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618PubMedCrossRef Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618PubMedCrossRef
2.
go back to reference Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413PubMedCrossRef Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413PubMedCrossRef
3.
go back to reference Chen M, Xu H (2015) Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol 98:713–725PubMedCrossRef Chen M, Xu H (2015) Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol 98:713–725PubMedCrossRef
4.
go back to reference van Lookeren Campagne M, Le Couter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232:151–164PubMedCrossRef van Lookeren Campagne M, Le Couter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232:151–164PubMedCrossRef
5.
go back to reference Kaiser PK (2008) Ranibizumab: the evidence of its therapeutic value in neovascular age-related macular degeneration. Core Evid 2:273–294PubMedPubMedCentral Kaiser PK (2008) Ranibizumab: the evidence of its therapeutic value in neovascular age-related macular degeneration. Core Evid 2:273–294PubMedPubMedCentral
6.
go back to reference Patel KH et al (2013) Rapid response of retinal pigment epithelial detachments to intravitreal aflibercept in neovascular age-related macular degeneration refractory to bevacizumab and ranibizumab. Eye 27:663PubMedPubMedCentralCrossRef Patel KH et al (2013) Rapid response of retinal pigment epithelial detachments to intravitreal aflibercept in neovascular age-related macular degeneration refractory to bevacizumab and ranibizumab. Eye 27:663PubMedPubMedCentralCrossRef
7.
go back to reference Schmid MK et al (2015) Efficacy and adverse events of aflibercept, ranibizumab and bevacizumab in age-related macular degeneration: a trade-off analysis. Br J Ophthalmol 99:141–146PubMedCrossRef Schmid MK et al (2015) Efficacy and adverse events of aflibercept, ranibizumab and bevacizumab in age-related macular degeneration: a trade-off analysis. Br J Ophthalmol 99:141–146PubMedCrossRef
9.
go back to reference Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867PubMedPubMedCentral Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867PubMedPubMedCentral
10.
go back to reference Tanaka E, Chaikitmongkol V, Bressler SB, Bressler NM (2015) Vision-threatening lesions developing with longer-term follow-up after treatment of neovascular age-related macular degeneration. Ophthalmology 122:153–161PubMedCrossRef Tanaka E, Chaikitmongkol V, Bressler SB, Bressler NM (2015) Vision-threatening lesions developing with longer-term follow-up after treatment of neovascular age-related macular degeneration. Ophthalmology 122:153–161PubMedCrossRef
11.
go back to reference Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747PubMedCrossRef Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747PubMedCrossRef
12.
go back to reference Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15:388–400PubMedCrossRef Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15:388–400PubMedCrossRef
13.
go back to reference Turner CT, Lim D, Granville DJ (2019) Granzyme B in skin inflammation and disease. Matrix Biol 75:126–140PubMedCrossRef Turner CT, Lim D, Granville DJ (2019) Granzyme B in skin inflammation and disease. Matrix Biol 75:126–140PubMedCrossRef
14.
15.
go back to reference Matsubara JA et al (2020) Retinal distribution and extracellular activity of granzyme B: a serine protease that degrades retinal pigment epithelial tight junctions and extracellular matrix proteins. Front Immunol 11:574PubMedPubMedCentralCrossRef Matsubara JA et al (2020) Retinal distribution and extracellular activity of granzyme B: a serine protease that degrades retinal pigment epithelial tight junctions and extracellular matrix proteins. Front Immunol 11:574PubMedPubMedCentralCrossRef
17.
go back to reference Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107PubMedCrossRef Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107PubMedCrossRef
18.
go back to reference Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29:1–18PubMedCrossRef Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29:1–18PubMedCrossRef
19.
go back to reference Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058PubMedPubMedCentralCrossRef Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058PubMedPubMedCentralCrossRef
20.
go back to reference Chong NV et al (2005) Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166:241–251PubMedPubMedCentralCrossRef Chong NV et al (2005) Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166:241–251PubMedPubMedCentralCrossRef
21.
go back to reference Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317PubMedPubMedCentralCrossRef Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317PubMedPubMedCentralCrossRef
22.
go back to reference Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786PubMedPubMedCentralCrossRef Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786PubMedPubMedCentralCrossRef
23.
go back to reference Dubchak E et al (2022) Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 13:980742PubMedPubMedCentralCrossRef Dubchak E et al (2022) Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 13:980742PubMedPubMedCentralCrossRef
25.
go back to reference Hsu D et al (2020) Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. Biomed Opt Express 11:6945PubMedPubMedCentralCrossRef Hsu D et al (2020) Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. Biomed Opt Express 11:6945PubMedPubMedCentralCrossRef
27.
go back to reference American National Standards Institute (2007) American National Standard for Safe Use of Lasers. ANSI Z136.1. Laser Institute of America American National Standards Institute (2007) American National Standard for Safe Use of Lasers. ANSI Z136.1. Laser Institute of America
28.
go back to reference Makita S, Hong YJ, Miura M, Yasuno Y (2014) Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography. Opt Lett 39:6783–6786PubMedCrossRef Makita S, Hong YJ, Miura M, Yasuno Y (2014) Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography. Opt Lett 39:6783–6786PubMedCrossRef
29.
go back to reference Ju MJ et al (2013) Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Opt Express 21:19412–19436PubMedCrossRef Ju MJ et al (2013) Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Opt Express 21:19412–19436PubMedCrossRef
30.
go back to reference Krzystolik MG (2002) Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120:338PubMedCrossRef Krzystolik MG (2002) Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120:338PubMedCrossRef
31.
33.
go back to reference Hendel A, Hiebert PR, Boivin WA, Williams SJ, Granville DJ (2010) Granzymes in age-related cardiovascular and pulmonary diseases. Cell Death Differ 17:596–606PubMedCrossRef Hendel A, Hiebert PR, Boivin WA, Williams SJ, Granville DJ (2010) Granzymes in age-related cardiovascular and pulmonary diseases. Cell Death Differ 17:596–606PubMedCrossRef
34.
go back to reference Hiebert PR, Wu D, Granville DJ (2013) Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice. Cell Death Differ 20:1404–1414PubMedPubMedCentralCrossRef Hiebert PR, Wu D, Granville DJ (2013) Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice. Cell Death Differ 20:1404–1414PubMedPubMedCentralCrossRef
35.
go back to reference Hiroyasu S et al (2021) Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 12:1–14CrossRef Hiroyasu S et al (2021) Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 12:1–14CrossRef
39.
go back to reference Wahl DJ, Ng R, Ju MJ, Jian Y, Sarunic MV (2018) Sensorless adaptive optics multimodal en-face small animal retinal imaging. Biomed Opt Express 10:252–267PubMedPubMedCentralCrossRef Wahl DJ, Ng R, Ju MJ, Jian Y, Sarunic MV (2018) Sensorless adaptive optics multimodal en-face small animal retinal imaging. Biomed Opt Express 10:252–267PubMedPubMedCentralCrossRef
40.
41.
go back to reference Nizawa T et al (2021) Topical ketotifen fumarate inhibits choroidal mast cell degranulation and loss of retinal pigment epithelial cells in rat model for geographic atrophy. Transl Vis Sci Technol 10:37PubMedPubMedCentralCrossRef Nizawa T et al (2021) Topical ketotifen fumarate inhibits choroidal mast cell degranulation and loss of retinal pigment epithelial cells in rat model for geographic atrophy. Transl Vis Sci Technol 10:37PubMedPubMedCentralCrossRef
42.
go back to reference Bhutto IA et al (2016) Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 100:720–726PubMedCrossRef Bhutto IA et al (2016) Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 100:720–726PubMedCrossRef
43.
go back to reference Ribatti D (2018) The staining of mast cells: a historical overview. IAA 176:55–60 Ribatti D (2018) The staining of mast cells: a historical overview. IAA 176:55–60
44.
go back to reference Milićević NM, Milićević Z (1985) Naphthol AS D chloroacetate esterase-positive macrophages in the cortico-medullary zone of the normal rat thymus. Virchows Archiv B 50:193–198CrossRef Milićević NM, Milićević Z (1985) Naphthol AS D chloroacetate esterase-positive macrophages in the cortico-medullary zone of the normal rat thymus. Virchows Archiv B 50:193–198CrossRef
47.
go back to reference McHale, C., Mohammed, Z. & Gomez, G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Frontiers in Immunology 10, (2019). McHale, C., Mohammed, Z. & Gomez, G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Frontiers in Immunology 10, (2019).
48.
go back to reference Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142PubMedCrossRef Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142PubMedCrossRef
49.
go back to reference Theoharides TC, Tsilioni I, Ren H (2019) Recent advances in our understanding of mast cell activation—or should it be mast cell mediator disorders? Expert Rev Clin Immunol 15:639–656PubMedPubMedCentralCrossRef Theoharides TC, Tsilioni I, Ren H (2019) Recent advances in our understanding of mast cell activation—or should it be mast cell mediator disorders? Expert Rev Clin Immunol 15:639–656PubMedPubMedCentralCrossRef
51.
go back to reference Shen Y et al (2018) Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing. Exp Mol Med 50:1–11PubMedCrossRef Shen Y et al (2018) Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing. Exp Mol Med 50:1–11PubMedCrossRef
52.
go back to reference Berglin L et al (2003) Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2–deficient mice. Invest Ophthalmol Vis Sci 44:403–408PubMedCrossRef Berglin L et al (2003) Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2–deficient mice. Invest Ophthalmol Vis Sci 44:403–408PubMedCrossRef
53.
go back to reference Alghisi GC, Ponsonnet L, Rüegg C (2009) The integrin antagonist cilengitide activates αVβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS ONE 4:e4449PubMedPubMedCentralCrossRef Alghisi GC, Ponsonnet L, Rüegg C (2009) The integrin antagonist cilengitide activates αVβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS ONE 4:e4449PubMedPubMedCentralCrossRef
54.
go back to reference Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W (2014) Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 20:1003–1016PubMedPubMedCentralCrossRef Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W (2014) Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 20:1003–1016PubMedPubMedCentralCrossRef
55.
go back to reference Mansoor N et al (2019) Molecular mechanisms of complement system proteins and matrix metalloproteinases in the pathogenesis of age-related macular degeneration. Curr Mol Med 19:705–718PubMedCrossRef Mansoor N et al (2019) Molecular mechanisms of complement system proteins and matrix metalloproteinases in the pathogenesis of age-related macular degeneration. Curr Mol Med 19:705–718PubMedCrossRef
56.
go back to reference Zhao M et al (2019) Mineralocorticoid receptor antagonism limits experimental choroidal neovascularization and structural changes associated with neovascular age-related macular degeneration. Nat Commun 10:369PubMedPubMedCentralCrossRef Zhao M et al (2019) Mineralocorticoid receptor antagonism limits experimental choroidal neovascularization and structural changes associated with neovascular age-related macular degeneration. Nat Commun 10:369PubMedPubMedCentralCrossRef
57.
58.
go back to reference Hendel A, Granville DJ (2013) Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation. Matrix Biol 32:14–22PubMedCrossRef Hendel A, Granville DJ (2013) Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation. Matrix Biol 32:14–22PubMedCrossRef
59.
go back to reference Buzza MS et al (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549–23558PubMedCrossRef Buzza MS et al (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549–23558PubMedCrossRef
60.
go back to reference Hendel A, Hsu I, Granville DJ (2014) Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability. Lab Invest 94:716–725PubMedPubMedCentralCrossRef Hendel A, Hsu I, Granville DJ (2014) Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability. Lab Invest 94:716–725PubMedPubMedCentralCrossRef
62.
go back to reference Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 15:1170–1178PubMedCrossRef Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med 15:1170–1178PubMedCrossRef
64.
go back to reference Petrovski G et al (2011) Clearance of dying ARPE-19 cells by professional and nonprofessional phagocytes in vitro–implications for age-related macular degeneration (AMD). Acta Ophthalmol 89:e30–e34PubMedCrossRef Petrovski G et al (2011) Clearance of dying ARPE-19 cells by professional and nonprofessional phagocytes in vitro–implications for age-related macular degeneration (AMD). Acta Ophthalmol 89:e30–e34PubMedCrossRef
65.
go back to reference Szatmári-Tóth M et al (2019) Human embryonic stem cell-derived retinal pigment epithelium-role in dead cell clearance and inflammation. Int J Mol Sci 20:926PubMedPubMedCentralCrossRef Szatmári-Tóth M et al (2019) Human embryonic stem cell-derived retinal pigment epithelium-role in dead cell clearance and inflammation. Int J Mol Sci 20:926PubMedPubMedCentralCrossRef
66.
go back to reference Parkinson LG et al (2015) Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 14:67–77PubMedCrossRef Parkinson LG et al (2015) Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 14:67–77PubMedCrossRef
67.
go back to reference Wilson SH et al (2003) Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through α 5 β 1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci 44:1704PubMedCrossRef Wilson SH et al (2003) Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through α 5 β 1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci 44:1704PubMedCrossRef
68.
go back to reference Austin BA, Liu B, Li Z, Nussenblatt RB (2009) Biologically active fibronectin fragments stimulate release of MCP-1 and catabolic cytokines from murine retinal pigment epithelium. Invest Ophthalmol Vis Sci 50:2896–2902PubMedCrossRef Austin BA, Liu B, Li Z, Nussenblatt RB (2009) Biologically active fibronectin fragments stimulate release of MCP-1 and catabolic cytokines from murine retinal pigment epithelium. Invest Ophthalmol Vis Sci 50:2896–2902PubMedCrossRef
69.
go back to reference Iruela-Arispe ML, Sage EH (1993) Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1. J Cell Biochem 52:414–430PubMedCrossRef Iruela-Arispe ML, Sage EH (1993) Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1. J Cell Biochem 52:414–430PubMedCrossRef
70.
go back to reference Nagineni CN et al (2003) Transforming growth factor-β induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: Involvement of mitogen-activated protein kinases. J Cell Physiol 197:453–462PubMedCrossRef Nagineni CN et al (2003) Transforming growth factor-β induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: Involvement of mitogen-activated protein kinases. J Cell Physiol 197:453–462PubMedCrossRef
71.
go back to reference Izumi-Nagai K et al (2007) Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 170:2149–2158PubMedPubMedCentralCrossRef Izumi-Nagai K et al (2007) Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 170:2149–2158PubMedPubMedCentralCrossRef
73.
go back to reference Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ (2022) Granzyme B in epithelial barrier dysfunction and related skin diseases. Am J Physiol Cell Physiol 323:C170–C189PubMedCrossRef Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ (2022) Granzyme B in epithelial barrier dysfunction and related skin diseases. Am J Physiol Cell Physiol 323:C170–C189PubMedCrossRef
74.
go back to reference Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41:3158–3164PubMed Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41:3158–3164PubMed
75.
go back to reference Uno K, Bhutto IA, McLeod DS, Merges C, Lutty GA (2006) Impaired expression of thrombospondin-1 in eyes with age related macular degeneration. Br J Ophthalmol 90:48–54PubMedPubMedCentralCrossRef Uno K, Bhutto IA, McLeod DS, Merges C, Lutty GA (2006) Impaired expression of thrombospondin-1 in eyes with age related macular degeneration. Br J Ophthalmol 90:48–54PubMedPubMedCentralCrossRef
76.
go back to reference Obasanmi G et al (2023) Granzyme B contributes to choroidal neovascularization and age-related macular degeneration through proteolysis of thrombospondin-1. Lab Invest 103:100123PubMedCrossRef Obasanmi G et al (2023) Granzyme B contributes to choroidal neovascularization and age-related macular degeneration through proteolysis of thrombospondin-1. Lab Invest 103:100123PubMedCrossRef
77.
go back to reference Shu X, Li H, Dong B, Sun C, Zhang HF (2017) Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. Biomed Opt Express 8:2851PubMedPubMedCentralCrossRef Shu X, Li H, Dong B, Sun C, Zhang HF (2017) Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. Biomed Opt Express 8:2851PubMedPubMedCentralCrossRef
79.
go back to reference Mcharg S et al (2022) Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proc Natl Acad Sci USA 119:e2118510119PubMedPubMedCentralCrossRef Mcharg S et al (2022) Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proc Natl Acad Sci USA 119:e2118510119PubMedPubMedCentralCrossRef
80.
81.
go back to reference Matsubara JA et al (2020) Retinal distribution and extracellular activity of granzyme B: A serine protease that degrades retinal pigment epithelial tight junctions and extracellular matrix proteins. Front Immunol 11:574PubMedPubMedCentralCrossRef Matsubara JA et al (2020) Retinal distribution and extracellular activity of granzyme B: A serine protease that degrades retinal pigment epithelial tight junctions and extracellular matrix proteins. Front Immunol 11:574PubMedPubMedCentralCrossRef
Metadata
Title
Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization
Authors
Gideon Obasanmi
Manjosh Uppal
Jing Z. Cui
Jeanne Xi
Myeong Jin Ju
Jun Song
Eleanor To
Siqi Li
Wania Khan
Darian Cheng
John Zhu
Lyden Irani
Isa Samad
Julie Zhu
Hyung-Suk Yoo
Alexandre Aubert
Jonathan Stoddard
Martha Neuringer
David J. Granville
Joanne A. Matsubara
Publication date
18-03-2024
Publisher
Springer Netherlands
Published in
Angiogenesis
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-024-09909-9
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.