Skip to main content
Top
Published in: Inflammation 4/2018

01-08-2018 | ORIGINAL ARTICLE

M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization

Authors: Marielle Kaplan, Anna Shur, Yvgeny Tendler

Published in: Inflammation | Issue 4/2018

Login to get access

Abstract

Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.
Literature
2.
go back to reference Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews. Immunology 5: 953–964.CrossRefPubMed Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews. Immunology 5: 953–964.CrossRefPubMed
4.
go back to reference Moore, K.J., F.J. Sheedy, and E.A. Fisher. 2013. Macrophages in atherosclerosis: A dynamic balance. Nat Rev 13: 709–721.CrossRef Moore, K.J., F.J. Sheedy, and E.A. Fisher. 2013. Macrophages in atherosclerosis: A dynamic balance. Nat Rev 13: 709–721.CrossRef
6.
go back to reference Mantovani, A., C. Garlanda, and M. Locati. 2011. Macrophage diversity and polarization in atherosclerosis: A question of balance. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 1419–1423.CrossRef Mantovani, A., C. Garlanda, and M. Locati. 2011. Macrophage diversity and polarization in atherosclerosis: A question of balance. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 1419–1423.CrossRef
7.
go back to reference Bisoendial, R.J., S.M. Boekholdt, M. Vergeer, E.S.G. Stroes, and J.J.P. Kastelein. 2010. C-reactive protein is a mediator of cardiovascular disease. European Heart Journal 31: 2087–2095.CrossRefPubMed Bisoendial, R.J., S.M. Boekholdt, M. Vergeer, E.S.G. Stroes, and J.J.P. Kastelein. 2010. C-reactive protein is a mediator of cardiovascular disease. European Heart Journal 31: 2087–2095.CrossRefPubMed
8.
go back to reference Yeh, E.T. 2004. CRP as a mediator of disease. Circulation 199 (21Suppl1): II11–II14. Yeh, E.T. 2004. CRP as a mediator of disease. Circulation 199 (21Suppl1): II11–II14.
9.
go back to reference Paul, A., A.T.H. Yeh, and L. Chan. 2005. A proatherogenic role of C-reactive protein in vivo. Current Opinion in Lipidology 16: 512–517.CrossRefPubMed Paul, A., A.T.H. Yeh, and L. Chan. 2005. A proatherogenic role of C-reactive protein in vivo. Current Opinion in Lipidology 16: 512–517.CrossRefPubMed
10.
go back to reference Agrawal, A., D.J. Hammond Jr, and S.K. Singh. 2010. Athrosclerosis-related functions of C-reactive protein. Cardiovascular & Hematological Disorders Drug Targets 10 (4): 235–240.CrossRef Agrawal, A., D.J. Hammond Jr, and S.K. Singh. 2010. Athrosclerosis-related functions of C-reactive protein. Cardiovascular & Hematological Disorders Drug Targets 10 (4): 235–240.CrossRef
11.
go back to reference Jabs, W.J., E. Theissing, M. Nitschke, J.F. Bechtel, M. Duchrow, S. Mohamed, B. Jahrbeck, H.H. Sievers, J. Steinhoff, and C. Bartels. 2003. Local generation of C-reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue. Circulation 108: 1428–1431.CrossRefPubMed Jabs, W.J., E. Theissing, M. Nitschke, J.F. Bechtel, M. Duchrow, S. Mohamed, B. Jahrbeck, H.H. Sievers, J. Steinhoff, and C. Bartels. 2003. Local generation of C-reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue. Circulation 108: 1428–1431.CrossRefPubMed
12.
go back to reference Ishikawa, T., K. Hatakeyama, T. Imamura, H. Date, Y. Shibata, Y. Hikichi, Y. Asada, and T. Eto. 2003. Involvement of C-reactive protein obtained by directional coronary atherectomy in plaque instability and developing restenosis in patients with stable or unstable angina pectoris. The American Journal of Cardiology 91: 287–292.CrossRefPubMed Ishikawa, T., K. Hatakeyama, T. Imamura, H. Date, Y. Shibata, Y. Hikichi, Y. Asada, and T. Eto. 2003. Involvement of C-reactive protein obtained by directional coronary atherectomy in plaque instability and developing restenosis in patients with stable or unstable angina pectoris. The American Journal of Cardiology 91: 287–292.CrossRefPubMed
13.
go back to reference Ishikawa, T., T. Imamura, K. Hatakeyama, H. Date, T. Nagoshi, R. Kawamoto, A. Matsuyama, Y. Asada, and T. Eto. 2004. Possible contribution of C-reactive protein within coronary plaque to increasing its own plasma levels across coronary circulation. The American Journal of Cardiology 93: 611–614.CrossRefPubMed Ishikawa, T., T. Imamura, K. Hatakeyama, H. Date, T. Nagoshi, R. Kawamoto, A. Matsuyama, Y. Asada, and T. Eto. 2004. Possible contribution of C-reactive protein within coronary plaque to increasing its own plasma levels across coronary circulation. The American Journal of Cardiology 93: 611–614.CrossRefPubMed
14.
go back to reference Alvarez Garcia, B., C. Ruiz, P. Chacon, J.A. Sabin, and M. Matas. 2003. High sensitivity C-reactive protein in high grade carotid stenosis: Risk marker for unstable carotid plaque. Journal of Vascular Surgery 38 (5): 1018–1024.CrossRefPubMed Alvarez Garcia, B., C. Ruiz, P. Chacon, J.A. Sabin, and M. Matas. 2003. High sensitivity C-reactive protein in high grade carotid stenosis: Risk marker for unstable carotid plaque. Journal of Vascular Surgery 38 (5): 1018–1024.CrossRefPubMed
15.
go back to reference Lonn, M.E., J.M. Dennis, and R. Stocker. 2012. Actions of “antioxidants” in the protection against atherosclerosis. Free Radical Biology & Medicine 53: 863–884.CrossRef Lonn, M.E., J.M. Dennis, and R. Stocker. 2012. Actions of “antioxidants” in the protection against atherosclerosis. Free Radical Biology & Medicine 53: 863–884.CrossRef
16.
go back to reference Ozer, N.K., O. Sirikci, S. Taha, et al. 1998. Effect of vitamin E and probucol on dietary cholesterol-induced atherosclerosis in rabbits. Free Radical Biology & Medicine 24: 226–233.CrossRef Ozer, N.K., O. Sirikci, S. Taha, et al. 1998. Effect of vitamin E and probucol on dietary cholesterol-induced atherosclerosis in rabbits. Free Radical Biology & Medicine 24: 226–233.CrossRef
17.
go back to reference Waddington, E., I.B. Puddey, and K.D. Croft. 2004. Red wine polyphenolic compounds inhibit atherosclerosis in apolipoprotein E deficient mice independently of effect on lipid peroxidation. The American Journal of Clinical Nutrition 79: 54–61.CrossRefPubMed Waddington, E., I.B. Puddey, and K.D. Croft. 2004. Red wine polyphenolic compounds inhibit atherosclerosis in apolipoprotein E deficient mice independently of effect on lipid peroxidation. The American Journal of Clinical Nutrition 79: 54–61.CrossRefPubMed
18.
go back to reference Aviram, M., and J. Vaya. 2001. Markers for low-density lipoprotein oxidation. Methods in Enzymology 335: 244–256.CrossRefPubMed Aviram, M., and J. Vaya. 2001. Markers for low-density lipoprotein oxidation. Methods in Enzymology 335: 244–256.CrossRefPubMed
19.
go back to reference Misumi, Y., Y. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. 1986. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. The Journal of Biological Chemistry 261: 11398–11403.PubMed Misumi, Y., Y. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. 1986. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. The Journal of Biological Chemistry 261: 11398–11403.PubMed
20.
go back to reference Oeckinghaus, A., M.S. Hayden, and S. Ghosh. 2011. Crosstalk in NF-κB signaling pathways. Nature Immunology 12: 695–708.CrossRefPubMed Oeckinghaus, A., M.S. Hayden, and S. Ghosh. 2011. Crosstalk in NF-κB signaling pathways. Nature Immunology 12: 695–708.CrossRefPubMed
21.
go back to reference Lopez-Franco, O., P. Hernandez-Vargas, G. Ortiz-Munoz, G. Sanjuan, et al. 2006. Parthenolide modulates the NF-κB-mediated inflammatory responses in experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 1864–1870.CrossRefPubMed Lopez-Franco, O., P. Hernandez-Vargas, G. Ortiz-Munoz, G. Sanjuan, et al. 2006. Parthenolide modulates the NF-κB-mediated inflammatory responses in experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 1864–1870.CrossRefPubMed
22.
go back to reference Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and function. Immunity 32: 593–604.CrossRefPubMed Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and function. Immunity 32: 593–604.CrossRefPubMed
23.
go back to reference Teupser, D., O. Weber, T.N. Rao, K. Sass, J. Thiery, and H. Jorg Fehling. 2011. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. The Journal of Biological Chemistry 286 (8): 6272–6279.CrossRefPubMed Teupser, D., O. Weber, T.N. Rao, K. Sass, J. Thiery, and H. Jorg Fehling. 2011. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. The Journal of Biological Chemistry 286 (8): 6272–6279.CrossRefPubMed
24.
go back to reference Kovacs, A., P. Tornvall, R. Nilsson, J. Tegner, A. Hamsten, and J. Bjorkegren. 2007. Human C-reactive protein slows atherosclerosis development in a mouse model with human like hypercholesterolemia. Proceedings of the National Academy of Sciences of the United States of America 104 (34): 13768–13773.CrossRefPubMedPubMedCentral Kovacs, A., P. Tornvall, R. Nilsson, J. Tegner, A. Hamsten, and J. Bjorkegren. 2007. Human C-reactive protein slows atherosclerosis development in a mouse model with human like hypercholesterolemia. Proceedings of the National Academy of Sciences of the United States of America 104 (34): 13768–13773.CrossRefPubMedPubMedCentral
25.
go back to reference Torzewski, J. 2005. C-reactive protein in atherogenesis: New insights from established animal models. The American Journal of Pathology 167: 923–925.CrossRefPubMedPubMedCentral Torzewski, J. 2005. C-reactive protein in atherogenesis: New insights from established animal models. The American Journal of Pathology 167: 923–925.CrossRefPubMedPubMedCentral
26.
go back to reference Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in cryptococcus neoformans infection. MBio 4 (3): e00264–e00213.CrossRefPubMedPubMedCentral Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in cryptococcus neoformans infection. MBio 4 (3): e00264–e00213.CrossRefPubMedPubMedCentral
28.
go back to reference Verma, S., S. Devaraj, and I. Jialal. 2006. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 113: 2135–2150.PubMed Verma, S., S. Devaraj, and I. Jialal. 2006. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 113: 2135–2150.PubMed
29.
go back to reference Danesh, J., and M.B. Pepys. 2009. C-reactive protein and coronary disease: Is there a causal link? Circulation 120: 2036–2039.CrossRefPubMed Danesh, J., and M.B. Pepys. 2009. C-reactive protein and coronary disease: Is there a causal link? Circulation 120: 2036–2039.CrossRefPubMed
30.
go back to reference Abeywardena, M.Y., W.R. Leifert, K.E. Warnes, J.N. Varghese, and R.J. Head. 2009. Cardiovascular biology of interleukin-6. Current Pharmaceutical Design 15: 1809–1821.CrossRefPubMed Abeywardena, M.Y., W.R. Leifert, K.E. Warnes, J.N. Varghese, and R.J. Head. 2009. Cardiovascular biology of interleukin-6. Current Pharmaceutical Design 15: 1809–1821.CrossRefPubMed
31.
go back to reference Zhang, Y.X., W.J. Cliff, G.I. Schoefl, and G. Higgins. 1999. Coronary C-reactive protein distribution: Its relation to development of atherosclerosis. Atherosclerosis 145: 375–379.CrossRefPubMed Zhang, Y.X., W.J. Cliff, G.I. Schoefl, and G. Higgins. 1999. Coronary C-reactive protein distribution: Its relation to development of atherosclerosis. Atherosclerosis 145: 375–379.CrossRefPubMed
32.
go back to reference Torzewski, J., M. Torzewski, D.E. Bowyer, M. Fröhlich, W. Koenig, et al. 1998. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arteriosclerosis, Thrombosis, and Vascular Biology 18: 1386–1392.CrossRefPubMed Torzewski, J., M. Torzewski, D.E. Bowyer, M. Fröhlich, W. Koenig, et al. 1998. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arteriosclerosis, Thrombosis, and Vascular Biology 18: 1386–1392.CrossRefPubMed
33.
go back to reference Ciubotaru, I., L.A. Potempa, and R.C. Wander. 2005. Production of modified CRP in U937-derived macrophages. Experimental Biology and Medicine 230: 762–770.CrossRefPubMed Ciubotaru, I., L.A. Potempa, and R.C. Wander. 2005. Production of modified CRP in U937-derived macrophages. Experimental Biology and Medicine 230: 762–770.CrossRefPubMed
34.
go back to reference Kaplan, M., Y. Tendler, R. Mahamid, M. Shiner, M. Aviram, and T. Hayek. 2010. High glucose regulates C-reactive protein production in macrophages. Clinical Chemistry 2010 (56): 1036–1038. Kaplan, M., Y. Tendler, R. Mahamid, M. Shiner, M. Aviram, and T. Hayek. 2010. High glucose regulates C-reactive protein production in macrophages. Clinical Chemistry 2010 (56): 1036–1038.
35.
go back to reference Kaplan, M., S. Hamoud, Y. Tendler, E. Meilin, A. Lazarovitch, S. Nitecki, and T. Hayek. 2014. CRP expression in human monocytes derived macrophages significantly correlates with CRP content in carotid atherosclerotic lesions. Journal of Inflammation (Lond) 11 (1): 7–14.CrossRef Kaplan, M., S. Hamoud, Y. Tendler, E. Meilin, A. Lazarovitch, S. Nitecki, and T. Hayek. 2014. CRP expression in human monocytes derived macrophages significantly correlates with CRP content in carotid atherosclerotic lesions. Journal of Inflammation (Lond) 11 (1): 7–14.CrossRef
36.
go back to reference Bonaventura, A., F. Mach, A. Roth, S. Lenglet, F. Burger, et al. 2016. Intraplaque expression of C-reactive protein predicts cardiovascular events in patients with severe atherosclerotic carotid artery stenosis. Mediators Inflammation. https://doi.org/10.1155/2016/9153673. Bonaventura, A., F. Mach, A. Roth, S. Lenglet, F. Burger, et al. 2016. Intraplaque expression of C-reactive protein predicts cardiovascular events in patients with severe atherosclerotic carotid artery stenosis. Mediators Inflammation. https://​doi.​org/​10.​1155/​2016/​9153673.
37.
go back to reference Yang, X., W. XHu, Q. Zhang, Y. Wang, and L. Sun. 2010. Puerarin inhibits C-reactive protein expression via suppression of nuclear factor kappaB activation in lipopoysaccaride-induced peripheral blood mononuclear cells of patients with stable angina pectoris. Basic & Clinical Pharmacology & Toxicology 107: 637–642.CrossRef Yang, X., W. XHu, Q. Zhang, Y. Wang, and L. Sun. 2010. Puerarin inhibits C-reactive protein expression via suppression of nuclear factor kappaB activation in lipopoysaccaride-induced peripheral blood mononuclear cells of patients with stable angina pectoris. Basic & Clinical Pharmacology & Toxicology 107: 637–642.CrossRef
38.
go back to reference Bouhlel, M.A., B. Derundas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, C. Zavadzki, B. Jude, G. Torpier, N. Marx, B. Staels, and G. Chinetti-Gbaguidi. 2007. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed Bouhlel, M.A., B. Derundas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, C. Zavadzki, B. Jude, G. Torpier, N. Marx, B. Staels, and G. Chinetti-Gbaguidi. 2007. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed
39.
go back to reference Sattler, K.J., J.E. Woodrum, O. Galili, et al. 2005. Concurrent treatment with renin-angiotensin system blockers and acetylsalicylic acid reduces nuclear factor-kappaB activation and C-reactive protein expression in human carotid artery plaques. Stroke 36: 14–20.CrossRefPubMed Sattler, K.J., J.E. Woodrum, O. Galili, et al. 2005. Concurrent treatment with renin-angiotensin system blockers and acetylsalicylic acid reduces nuclear factor-kappaB activation and C-reactive protein expression in human carotid artery plaques. Stroke 36: 14–20.CrossRefPubMed
40.
go back to reference Agrawal, A., H. Cha-Molstad, D. Samols, and I. Kushner. 2003. Overexpressed nuclear factor-κB can participate in endogenous C-reactive protein induction, and enhances the effects of C/EBPβ and signal transducer and activator of transcription-3. Immunology 108 (4): 539–547.CrossRefPubMedPubMedCentral Agrawal, A., H. Cha-Molstad, D. Samols, and I. Kushner. 2003. Overexpressed nuclear factor-κB can participate in endogenous C-reactive protein induction, and enhances the effects of C/EBPβ and signal transducer and activator of transcription-3. Immunology 108 (4): 539–547.CrossRefPubMedPubMedCentral
41.
go back to reference Voleti, B., and A. Agrawal. 2005. Regulation of basal and induced expression of C-reactive protein through an overlapping element for OCT-1 and NF-κB on the proximal promoter. Journal of Immunology 175 (5): 3386–3390.CrossRef Voleti, B., and A. Agrawal. 2005. Regulation of basal and induced expression of C-reactive protein through an overlapping element for OCT-1 and NF-κB on the proximal promoter. Journal of Immunology 175 (5): 3386–3390.CrossRef
42.
go back to reference Xue, J., S.V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. de Nardo, T.D. Gohel, M. Emde, L. Schmidleithner, H. Ganesan, A. Nino-Castro, M.R. Mallmann, L. Labzin, H. Theis, M. Kraut, M. Beyer, E. Latz, T.C. Freeman, T. Ulas, and J.L. Schultze. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274–288.CrossRefPubMedPubMedCentral Xue, J., S.V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. de Nardo, T.D. Gohel, M. Emde, L. Schmidleithner, H. Ganesan, A. Nino-Castro, M.R. Mallmann, L. Labzin, H. Theis, M. Kraut, M. Beyer, E. Latz, T.C. Freeman, T. Ulas, and J.L. Schultze. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274–288.CrossRefPubMedPubMedCentral
44.
go back to reference Van Tits, L.J.H., R. Stienstra, P.L. Van Lent, M.G. Netea, L.A.B. Joosten, et al. 2011. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2. Atherosclerosis 214: 345–349.CrossRefPubMed Van Tits, L.J.H., R. Stienstra, P.L. Van Lent, M.G. Netea, L.A.B. Joosten, et al. 2011. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2. Atherosclerosis 214: 345–349.CrossRefPubMed
45.
go back to reference Gallardo-Soler, A., C. Gómez-Nieto, M.L. Campo, C. Marathe, P. Tontonoz, A. Castrillo, and I. Corraliza. 2008. Arginase 1 induction by modified lipoproteins in macrophages: A peroxisome proliferator-activated receptor-γ mediated effect that links lipid metabolism and immunity. Molecular Endocrinology 22: 1394–1402.CrossRefPubMedPubMedCentral Gallardo-Soler, A., C. Gómez-Nieto, M.L. Campo, C. Marathe, P. Tontonoz, A. Castrillo, and I. Corraliza. 2008. Arginase 1 induction by modified lipoproteins in macrophages: A peroxisome proliferator-activated receptor-γ mediated effect that links lipid metabolism and immunity. Molecular Endocrinology 22: 1394–1402.CrossRefPubMedPubMedCentral
46.
go back to reference Shrpoor, A., L. Norouzi, M.H. Ansari, B. Ilkhanizadeh, and R. Gharaaghaji. 2013. Vasoprotective effect of vitamin E: Rescue of ethanol-induced atherosclerosis and inflammatory stress in rat vascular wall. International Immuno Pharmacology 16: 498–504.CrossRef Shrpoor, A., L. Norouzi, M.H. Ansari, B. Ilkhanizadeh, and R. Gharaaghaji. 2013. Vasoprotective effect of vitamin E: Rescue of ethanol-induced atherosclerosis and inflammatory stress in rat vascular wall. International Immuno Pharmacology 16: 498–504.CrossRef
47.
go back to reference Fuhrman, B., N. Volkova, and M. Aviram. 2005. Pomegranate juice inhibits oxidized LDL uptake and cholesterol biosynthesis in macrophages. The Journal of Nutritional Biochemistry 16: 570–576.CrossRefPubMed Fuhrman, B., N. Volkova, and M. Aviram. 2005. Pomegranate juice inhibits oxidized LDL uptake and cholesterol biosynthesis in macrophages. The Journal of Nutritional Biochemistry 16: 570–576.CrossRefPubMed
49.
go back to reference Porcheray, F., S. Viaud, A.C. Rimaniol, C. Léone, B. Samah, N. Dereuddre-Bosquet, D. Dormont, and G. Gras. 2005. Macrophage activation switching: An asset for the resolution of inflammation. Clinical and Experimental Immunology 142 (3): 481–489.PubMedPubMedCentral Porcheray, F., S. Viaud, A.C. Rimaniol, C. Léone, B. Samah, N. Dereuddre-Bosquet, D. Dormont, and G. Gras. 2005. Macrophage activation switching: An asset for the resolution of inflammation. Clinical and Experimental Immunology 142 (3): 481–489.PubMedPubMedCentral
Metadata
Title
M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization
Authors
Marielle Kaplan
Anna Shur
Yvgeny Tendler
Publication date
01-08-2018
Publisher
Springer US
Published in
Inflammation / Issue 4/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0793-8

Other articles of this Issue 4/2018

Inflammation 4/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.