Skip to main content
Top
Published in: Tumor Biology 5/2015

01-05-2015 | Research Article

LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo

Authors: Jundong Zhou, Bing Zheng, Jiansong Ji, Fei Shen, Han Min, Biao Liu, Jinchang Wu, Shuyu Zhang

Published in: Tumor Biology | Issue 5/2015

Login to get access

Abstract

KRAS mutation in colorectal cancer (CRC) activates transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) to promote tumor progression. In the current study, we explored the potential effect of LYTAK1, a novel TAK1 inhibitor, against KRAS mutant CRC cells in vitro and in vivo. We found that LYTAK1 dose-dependently inhibited KRAS mutant CRC cell (HT-29 and SW-620 lines) growth, and induced cell cycle G1-S arrest. Further, LYTAK1 activated apoptosis in HT-29 cells and SW-620 cells, and apoptosis inhibitors almost reversed LYTAK1-mediated growth inhibition. While in KRAS wild-type (WT) CRC cell lines (DLD-1 and HCT-116), LYTAK1 had almost no effect on cell growth, cell cycle progression, or cell apoptosis. In KRAS mutant HT-29 cells and SW-260 cells, LYTAK1 blocked TAK1 activation or phosphorylation at Thr-184/187. Activation of nuclear factor κB (NF-κB) in these cells, detected by phosphorylations of p65 and IκB kinase α (IKKα) as well as expression of NF-κB-regulated gene cyclin D1, was significantly inhibited by LYTAK1. Further, LYTAK1 treatment resulted in downregulation of β-catenin and Wnt response gene Axin 2, indicating Wnt inactivation. In vivo, oral LYTAK1 significantly inhibited HT-29 xenograft growth in nude mice. Together, these results show that LYTAK1 inhibits KRAS mutant CRC cell growth both in vitro and in vivo. LYTAK1 might be investigated as a novel agent against CRC with KRAS mutation.
Literature
1.
2.
go back to reference Westwood M, van Asselt T, Ramaekers B, Whiting P, Joore M, Armstrong N, et al. Kras mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2014;18:1–132.CrossRef Westwood M, van Asselt T, Ramaekers B, Whiting P, Joore M, Armstrong N, et al. Kras mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2014;18:1–132.CrossRef
3.
go back to reference Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci. 2012;13:12153–68.CrossRefPubMedPubMedCentral Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci. 2012;13:12153–68.CrossRefPubMedPubMedCentral
4.
go back to reference Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol. 2010;17:1168–76.CrossRefPubMed Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol. 2010;17:1168–76.CrossRefPubMed
5.
go back to reference Fakih MM. Kras mutation screening in colorectal cancer: from paper to practice. Clin Colorectal Cancer. 2010;9:22–30.CrossRefPubMed Fakih MM. Kras mutation screening in colorectal cancer: from paper to practice. Clin Colorectal Cancer. 2010;9:22–30.CrossRefPubMed
6.
go back to reference Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.CrossRefPubMed Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.CrossRefPubMed
7.
go back to reference Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci. 2012;33:522–30.CrossRefPubMed Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci. 2012;33:522–30.CrossRefPubMed
8.
go back to reference Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, Guha R, et al. Rnai screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets. 2011;11:976–86.CrossRefPubMedPubMedCentral Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, Guha R, et al. Rnai screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets. 2011;11:976–86.CrossRefPubMedPubMedCentral
9.
go back to reference Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011;103:1190–204.CrossRefPubMedPubMedCentral Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011;103:1190–204.CrossRefPubMedPubMedCentral
10.
go back to reference Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 2012;148:639–50.CrossRefPubMedPubMedCentral Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 2012;148:639–50.CrossRefPubMedPubMedCentral
11.
go back to reference Ray DM, Myers PH, Painter JT, Hoenerhoff MJ, Olden K, Roberts JD. Inhibition of transforming growth factor-beta-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis. Br J Cancer. 2012;107:129–36.CrossRefPubMedPubMedCentral Ray DM, Myers PH, Painter JT, Hoenerhoff MJ, Olden K, Roberts JD. Inhibition of transforming growth factor-beta-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis. Br J Cancer. 2012;107:129–36.CrossRefPubMedPubMedCentral
12.
go back to reference Chen MB, Wei MX, Han JY, Wu XY, Li C, Wang J, et al. Microrna-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cell Signal. 2014;26:102–9.CrossRefPubMed Chen MB, Wei MX, Han JY, Wu XY, Li C, Wang J, et al. Microrna-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cell Signal. 2014;26:102–9.CrossRefPubMed
13.
go back to reference Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, et al. Deregulation of the PI3k and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest. 2010;120:2858–66.CrossRefPubMedPubMedCentral Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, et al. Deregulation of the PI3k and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest. 2010;120:2858–66.CrossRefPubMedPubMedCentral
15.
go back to reference Vaiopoulos AG, Athanasoula K, Papavassiliou AG. NF-kappab in colorectal cancer. J Mol Med (Berl). 2013;91:1029–37.CrossRef Vaiopoulos AG, Athanasoula K, Papavassiliou AG. NF-kappab in colorectal cancer. J Mol Med (Berl). 2013;91:1029–37.CrossRef
16.
go back to reference Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin Jr AS. NF-kappab controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19:5785–99.CrossRefPubMedPubMedCentral Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin Jr AS. NF-kappab controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19:5785–99.CrossRefPubMedPubMedCentral
17.
go back to reference McConnell BB, Yang VW. The role of inflammation in the pathogenesis of colorectal cancer. Curr Color Cancer Rep. 2009;5:69–74.CrossRef McConnell BB, Yang VW. The role of inflammation in the pathogenesis of colorectal cancer. Curr Color Cancer Rep. 2009;5:69–74.CrossRef
18.
go back to reference Ishizuka M, Nagata H, Takagi K, Kubota K. Influence of inflammation-based prognostic score on mortality of patients undergoing chemotherapy for far advanced or recurrent unresectable colorectal cancer. Ann Surg. 2009;250:268–72.CrossRefPubMed Ishizuka M, Nagata H, Takagi K, Kubota K. Influence of inflammation-based prognostic score on mortality of patients undergoing chemotherapy for far advanced or recurrent unresectable colorectal cancer. Ann Surg. 2009;250:268–72.CrossRefPubMed
19.
20.
go back to reference Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–G17.CrossRefPubMed Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–G17.CrossRefPubMed
21.
22.
Metadata
Title
LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo
Authors
Jundong Zhou
Bing Zheng
Jiansong Ji
Fei Shen
Han Min
Biao Liu
Jinchang Wu
Shuyu Zhang
Publication date
01-05-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2961-2

Other articles of this Issue 5/2015

Tumor Biology 5/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine