Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Lymphoma | Research

Comparison of tumor mutation burden of 300 various non-Hodgkin lymphomas using panel based massively parallel sequencing

Authors: Junhun Cho, Sang Eun Yoon, Seok Jin Kim, Young Hyeh Ko, Won Seog Kim

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Tumor mutation burden is an emerging biomarker for immunotherapy. Although several clinical trials for immunotherapy in lymphoma have been carried out, the mutation burden of various lymphomas is not well known yet. Thus, the objective of this study was to compare tumor mutation burden of various non-Hodgkin lymphomas using panel based massively parallel sequencing.

Methods

We conducted 405 gene panel based massively parallel sequencing of 300 non-Hodgkin lymphomas and investigate the number of SNV/Indel in each lymphoma.

Results

The number of SNV/Indel was higher in mature B-cell lymphoma than in mature T- and NK-cell lymphoma. (P < 0.001) The number of SNV/Indel in primary mediastinal large B-cell lymphoma and primary diffuse large B-cell lymphoma of the central nervous system was the highest, which was significantly higher than that in diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS).(P = 0.030 and P = 0.008, respectively) The SNV/Indel number in EBV-positive DLBCL NOS was significantly lower than that in DLBCL NOS. (P = 0.048) Peripheral T-cell lymphoma, NOS showed no significant difference in the number of SNV/Indel from extranodal NK/T-cell lymphoma, nasal type (P = 0.942) or angioimmunoblastic T-cell lymphoma (P = 0.739). The number of SNV/Indel in anaplastic large cell lymphoma, ALK-positive was significantly lower than that in anaplastic large cell lymphoma, ALK-negative (P = 0.049). It was the lowest among all the lymphomas considered.

Conclusion

Various lymphomas have different mutation burdens. Thus, tumor mutation burden can be used as a promising biomarker for immunotherapy in lymphomas.
Appendix
Available only for authorised users
Literature
7.
go back to reference Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest. 2015;125(10):3981–91. https://doi.org/10.1172/JCI82416. Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest. 2015;125(10):3981–91. https://​doi.​org/​10.​1172/​JCI82416.
14.
23.
go back to reference Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. https://doi.org/10.1016/S1470-2045(16)30167-X. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. https://​doi.​org/​10.​1016/​S1470-2045(16)30167-X.
25.
go back to reference Pascual M, Mena-Varas M, Robles EF, Garcia-Barchino MJ, Panizo C, Hervas-Stubbs S, et al. PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood. 2019;133(22):2401–12. https://doi.org/10.1182/blood.2018889931. Pascual M, Mena-Varas M, Robles EF, Garcia-Barchino MJ, Panizo C, Hervas-Stubbs S, et al. PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood. 2019;133(22):2401–12. https://​doi.​org/​10.​1182/​blood.​2018889931.
27.
go back to reference Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of Tumours of Haematopoietic and lymphoid tissues. Revised 4th edition ed. Lyon: IARC; 2017. Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of Tumours of Haematopoietic and lymphoid tissues. Revised 4th edition ed. Lyon: IARC; 2017.
33.
35.
go back to reference Merino DM, McShane LM, Fabrizio D, Funari V, Chen SJ, White JR, et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer. 2020;8(1):e000147. https://doi.org/10.1136/jitc-2019-000147. Merino DM, McShane LM, Fabrizio D, Funari V, Chen SJ, White JR, et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer. 2020;8(1):e000147. https://​doi.​org/​10.​1136/​jitc-2019-000147.
36.
go back to reference Endris V, Buchhalter I, Allgäuer M, Rempel E, Lier A, Volckmar AL, et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels. Int J Cancer. 2019;144(9):2303–12. https://doi.org/10.1002/ijc.32002. Endris V, Buchhalter I, Allgäuer M, Rempel E, Lier A, Volckmar AL, et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels. Int J Cancer. 2019;144(9):2303–12. https://​doi.​org/​10.​1002/​ijc.​32002.
38.
go back to reference Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6. https://doi.org/10.1038/35085588. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6. https://​doi.​org/​10.​1038/​35085588.
39.
go back to reference Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. https://doi.org/10.1084/jem.20031074. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. https://​doi.​org/​10.​1084/​jem.​20031074.
40.
go back to reference Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9. https://doi.org/10.1182/blood-2003-06-1841. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9. https://​doi.​org/​10.​1182/​blood-2003-06-1841.
42.
go back to reference Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. https://doi.org/10.1182/blood-2010-05-282780. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. https://​doi.​org/​10.​1182/​blood-2010-05-282780.
44.
50.
go back to reference Dobay MP, Lemonnier F, Missiaglia E, Bastard C, Vallois D, Jais J-P, et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica. 2017;102(4):e148–e51. https://doi.org/10.3324/haematol.2016.158428. Dobay MP, Lemonnier F, Missiaglia E, Bastard C, Vallois D, Jais J-P, et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica. 2017;102(4):e148–e51. https://​doi.​org/​10.​3324/​haematol.​2016.​158428.
52.
go back to reference Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, Morris SW, Connors JM, Vose JM, Viswanatha DS, Coldman A, Weisenburger DD. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21. Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, Morris SW, Connors JM, Vose JM, Viswanatha DS, Coldman A, Weisenburger DD. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
Metadata
Title
Comparison of tumor mutation burden of 300 various non-Hodgkin lymphomas using panel based massively parallel sequencing
Authors
Junhun Cho
Sang Eun Yoon
Seok Jin Kim
Young Hyeh Ko
Won Seog Kim
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08695-7

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine