Skip to main content
Top
Published in: Journal of Hematopathology 3/2019

01-09-2019 | Lymphoma | Original Article

Comprehensive detection of chromosomal translocations in lymphoproliferative disorders by massively parallel sequencing

Authors: Philippe Szankasi, Ashini Bolia, Michael Liew, Jonathan A. Schumacher, Elaine P. S. Gee, Anna P. Matynia, K. David Li, Jay L. Patel, Xinjie Xu, Mohamed E. Salama, Todd W. Kelley

Published in: Journal of Hematopathology | Issue 3/2019

Login to get access

Abstract

Balanced translocations have diagnostic and prognostic value in B-cell lymphoproliferative disorders (LPDs). Most of these translocations involve the juxtaposition of a strong immunoglobulin (Ig) enhancer to proto-oncogenes, such as BCL2, BCL6, and MYC, leading to their overexpression. These rearrangements generally do not result in mRNA fusions, and fluorescent in situ hybridization (FISH) remains the gold standard for assessing of recurrent translocations in LPDs. With the growing use of massively parallel sequencing for the detection of both point mutations and large structural rearrangements, we aimed at evaluating the utility of this method for the molecular work-up of B-cell LPDs side by side with FISH. We describe a method using solution capture for enrichment of known translocation breakpoints and massively parallel sequencing for the detection of balanced translocation in formalin-fixed tissues with a B-cell LPD. We detected a total of 57 rearrangements with a high concordance of 94.2% when compared to FISH. We detected translocations between BCL2, BCL6, and MYC and the three Ig loci and non-Ig loci, including novel partners for MYC and BCL6. In addition, massively parallel sequencing allowed a detailed analysis of the structure of the resulting chromosomal fusions. Our comparison shows the feasibility of using massively parallel sequencing for detecting balanced translocations in B-cell LPDs and advantages and disadvantages to both methods, and how they can complement each other.
Appendix
Available only for authorised users
Literature
2.
go back to reference Goossens T, Klein U, Kuppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 95(5):2463–2468CrossRefPubMedPubMedCentral Goossens T, Klein U, Kuppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 95(5):2463–2468CrossRefPubMedPubMedCentral
4.
go back to reference Shen W, Szankasi P, Sederberg M, Schumacher J, Frizzell KA, Gee EP, Patel JL, South ST, Xu X, Kelley TW (2016) Concurrent detection of targeted copy number variants and mutations using a myeloid malignancy next generation sequencing panel allows comprehensive genetic analysis using a single testing strategy. Br J Haematol 173(1):49–58. https://doi.org/10.1111/bjh.13921 CrossRefPubMed Shen W, Szankasi P, Sederberg M, Schumacher J, Frizzell KA, Gee EP, Patel JL, South ST, Xu X, Kelley TW (2016) Concurrent detection of targeted copy number variants and mutations using a myeloid malignancy next generation sequencing panel allows comprehensive genetic analysis using a single testing strategy. Br J Haematol 173(1):49–58. https://​doi.​org/​10.​1111/​bjh.​13921 CrossRefPubMed
5.
go back to reference Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T, Ohno H (2000) Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 60(9):2335–2341PubMed Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T, Ohno H (2000) Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 60(9):2335–2341PubMed
6.
go back to reference Ohno H (2006) Pathogenetic and clinical implications of non-immunoglobulin: BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematopathol : JCEH 46(2):43–53CrossRef Ohno H (2006) Pathogenetic and clinical implications of non-immunoglobulin: BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematopathol : JCEH 46(2):43–53CrossRef
8.
go back to reference Akasaka T, Akasaka H, Yonetani N, Ohno H, Yamabe H, Fukuhara S, Okuma M (1998) Refinement of the BCL2/immunoglobulin heavy chain fusion gene in t(14;18)(q32;q21) by polymerase chain reaction amplification for long targets. Genes Chromosom Cancer 21(1):17–29CrossRefPubMed Akasaka T, Akasaka H, Yonetani N, Ohno H, Yamabe H, Fukuhara S, Okuma M (1998) Refinement of the BCL2/immunoglobulin heavy chain fusion gene in t(14;18)(q32;q21) by polymerase chain reaction amplification for long targets. Genes Chromosom Cancer 21(1):17–29CrossRefPubMed
11.
go back to reference Murga Penas EM, Callet-Bauchu E, Ye H, Gazzo S, Berger F, Schilling G, Albert-Konetzny N, Vettorazzi E, Salles G, Wlodarska I, Du MQ, Bokemeyer C, Dierlamm J (2010) The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas contains templated nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma. Blood 115(11):2214–2219. https://doi.org/10.1182/blood-2009-08-236265 CrossRefPubMed Murga Penas EM, Callet-Bauchu E, Ye H, Gazzo S, Berger F, Schilling G, Albert-Konetzny N, Vettorazzi E, Salles G, Wlodarska I, Du MQ, Bokemeyer C, Dierlamm J (2010) The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas contains templated nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma. Blood 115(11):2214–2219. https://​doi.​org/​10.​1182/​blood-2009-08-236265 CrossRefPubMed
12.
go back to reference Fan H, Gulley ML, Gascoyne RD, Horsman DE, Adomat SA, Cho CG (1998) Molecular methods for detecting t(11;14) translocations in mantle-cell lymphomas. Diagn Mol Pathol 7(4):209–214CrossRefPubMed Fan H, Gulley ML, Gascoyne RD, Horsman DE, Adomat SA, Cho CG (1998) Molecular methods for detecting t(11;14) translocations in mantle-cell lymphomas. Diagn Mol Pathol 7(4):209–214CrossRefPubMed
13.
go back to reference Baens M, Steyls A, Dierlamm J, De Wolf-Peeters C, Marynen P (2000) Structure of the MLT gene and molecular characterization of the genomic breakpoint junctions in the t(11;18)(q21;q21) of marginal zone B-cell lymphomas of MALT type. Genes Chromosom Cancer 29(4):281–291CrossRefPubMed Baens M, Steyls A, Dierlamm J, De Wolf-Peeters C, Marynen P (2000) Structure of the MLT gene and molecular characterization of the genomic breakpoint junctions in the t(11;18)(q21;q21) of marginal zone B-cell lymphomas of MALT type. Genes Chromosom Cancer 29(4):281–291CrossRefPubMed
14.
go back to reference Yonetani N, Ueda C, Akasaka T, Nishikori M, Uchiyama T, Ohno H (2001) Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5′ region of BCL2 in B-cell tumors. Japn J Cancer Res : Gann 92(9):933–940CrossRef Yonetani N, Ueda C, Akasaka T, Nishikori M, Uchiyama T, Ohno H (2001) Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5′ region of BCL2 in B-cell tumors. Japn J Cancer Res : Gann 92(9):933–940CrossRef
15.
go back to reference Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv
20.
go back to reference Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ (1987) Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci U S A 84(8):2396–2400CrossRefPubMedPubMedCentral Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ (1987) Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci U S A 84(8):2396–2400CrossRefPubMedPubMedCentral
22.
go back to reference Cotter F, Price C, Zucca E, Young BD (1990) Direct sequence analysis of the 14q+ and 18q- chromosome junctions in follicular lymphoma. Blood 76(1):131–135PubMedCrossRef Cotter F, Price C, Zucca E, Young BD (1990) Direct sequence analysis of the 14q+ and 18q- chromosome junctions in follicular lymphoma. Blood 76(1):131–135PubMedCrossRef
23.
go back to reference Vaandrager JW, Schuuring E, Philippo K, Kluin PM (2000) V(D)J recombinase-mediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96(5):1947–1952PubMedCrossRef Vaandrager JW, Schuuring E, Philippo K, Kluin PM (2000) V(D)J recombinase-mediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96(5):1947–1952PubMedCrossRef
24.
go back to reference Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM, Bornkamm GW (1992) Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet 1(8):625–632CrossRefPubMed Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM, Bornkamm GW (1992) Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet 1(8):625–632CrossRefPubMed
25.
go back to reference Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM, Bornkamm GW (1992) Mapping chromosomal breakpoints of Burkitt’s t(8;14) translocations far upstream of c-myc. Cancer Res 52(23):6547–6552PubMed Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM, Bornkamm GW (1992) Mapping chromosomal breakpoints of Burkitt’s t(8;14) translocations far upstream of c-myc. Cancer Res 52(23):6547–6552PubMed
26.
go back to reference Einerson RR, Law ME, Blair HE, Kurtin PJ, McClure RF, Ketterling RP, Flynn HC, Dogan A, Remstein ED (2006) Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia 20(10):1790–1799. https://doi.org/10.1038/sj.leu.2404340 CrossRefPubMed Einerson RR, Law ME, Blair HE, Kurtin PJ, McClure RF, Ketterling RP, Flynn HC, Dogan A, Remstein ED (2006) Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia 20(10):1790–1799. https://​doi.​org/​10.​1038/​sj.​leu.​2404340 CrossRefPubMed
27.
go back to reference Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M (1989) Three breakpoints of variant t(2;8) translocations in Burkitt’s lymphoma cells fall within a region 140 kilobases distal from c-myc. Mol Cell Biol 9(5):2105–2113CrossRefPubMedPubMedCentral Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M (1989) Three breakpoints of variant t(2;8) translocations in Burkitt’s lymphoma cells fall within a region 140 kilobases distal from c-myc. Mol Cell Biol 9(5):2105–2113CrossRefPubMedPubMedCentral
28.
go back to reference Copie-Bergman C, Cuilliere-Dartigues P, Baia M, Briere J, Delarue R, Canioni D, Salles G, Parrens M, Belhadj K, Fabiani B, Recher C, Petrella T, Ketterer N, Peyrade F, Haioun C, Nagel I, Siebert R, Jardin F, Leroy K, Jais JP, Tilly H, Molina TJ, Gaulard P (2015) MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood 126(22):2466–2474. https://doi.org/10.1182/blood-2015-05-647602 CrossRefPubMed Copie-Bergman C, Cuilliere-Dartigues P, Baia M, Briere J, Delarue R, Canioni D, Salles G, Parrens M, Belhadj K, Fabiani B, Recher C, Petrella T, Ketterer N, Peyrade F, Haioun C, Nagel I, Siebert R, Jardin F, Leroy K, Jais JP, Tilly H, Molina TJ, Gaulard P (2015) MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood 126(22):2466–2474. https://​doi.​org/​10.​1182/​blood-2015-05-647602 CrossRefPubMed
29.
go back to reference Chong LC, Ben-Neriah S, Slack GW, Freeman C, Ennishi D, Mottok A, Collinge B, Abrisqueta P, Farinha P, Boyle M, Meissner B, Kridel R, Gerrie AS, Villa D, Savage KJ, Sehn LH, Siebert R, Morin RD, Gascoyne RD, Marra MA, Connors JM, Mungall AJ, Steidl C, Scott DW (2018) High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology. Blood Adv 2(20):2755–2765. https://doi.org/10.1182/bloodadvances.2018023572 CrossRefPubMedPubMedCentral Chong LC, Ben-Neriah S, Slack GW, Freeman C, Ennishi D, Mottok A, Collinge B, Abrisqueta P, Farinha P, Boyle M, Meissner B, Kridel R, Gerrie AS, Villa D, Savage KJ, Sehn LH, Siebert R, Morin RD, Gascoyne RD, Marra MA, Connors JM, Mungall AJ, Steidl C, Scott DW (2018) High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology. Blood Adv 2(20):2755–2765. https://​doi.​org/​10.​1182/​bloodadvances.​2018023572 CrossRefPubMedPubMedCentral
30.
go back to reference Zhu G, Benayed R, Ho C, Mullaney K, Sukhadia P, Rios K, Berry R, Rubin BP, Nafa K, Wang L, Klimstra DS, Ladanyi M, Hameed MR (2019) Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod Pathol 32(5):609–620. https://doi.org/10.1038/s41379-018-0175-7 CrossRefPubMed Zhu G, Benayed R, Ho C, Mullaney K, Sukhadia P, Rios K, Berry R, Rubin BP, Nafa K, Wang L, Klimstra DS, Ladanyi M, Hameed MR (2019) Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod Pathol 32(5):609–620. https://​doi.​org/​10.​1038/​s41379-018-0175-7 CrossRefPubMed
Metadata
Title
Comprehensive detection of chromosomal translocations in lymphoproliferative disorders by massively parallel sequencing
Authors
Philippe Szankasi
Ashini Bolia
Michael Liew
Jonathan A. Schumacher
Elaine P. S. Gee
Anna P. Matynia
K. David Li
Jay L. Patel
Xinjie Xu
Mohamed E. Salama
Todd W. Kelley
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Hematopathology / Issue 3/2019
Print ISSN: 1868-9256
Electronic ISSN: 1865-5785
DOI
https://doi.org/10.1007/s12308-019-00360-0

Other articles of this Issue 3/2019

Journal of Hematopathology 3/2019 Go to the issue