Skip to main content
Top
Published in: Seminars in Immunopathology 2/2010

01-06-2010 | Review

Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases

Authors: Stephanie M. Stanford, Tomas M. Mustelin, Nunzio Bottini

Published in: Seminars in Immunopathology | Issue 2/2010

Login to get access

Abstract

A relatively large number of protein tyrosine phosphatases (PTPs) are known to regulate signaling through the T cell receptor (TCR). Recent human genetics studies have shown that several of these PTPs are encoded by major autoimmunity genes. Here, we will focus on the lymphoid tyrosine phosphatase (LYP), a critical negative modulator of TCR signaling encoded by the PTPN22 gene. The functional analysis of autoimmune-associated PTPN22 genetic variants suggests that genetic variability of TCR signal transduction contributes to the pathogenesis of autoimmunity in humans.
Literature
1.
go back to reference Mustelin T, Tasken K (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371(Pt 1):15–27PubMedCrossRef Mustelin T, Tasken K (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371(Pt 1):15–27PubMedCrossRef
2.
go back to reference Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711PubMedCrossRef Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711PubMedCrossRef
3.
go back to reference Mustelin T, Alonso A, Bottini N et al (2004) Protein tyrosine phosphatases in T cell physiology. Mol Immunol 41(6–7):687–700PubMedCrossRef Mustelin T, Alonso A, Bottini N et al (2004) Protein tyrosine phosphatases in T cell physiology. Mol Immunol 41(6–7):687–700PubMedCrossRef
4.
go back to reference Kozlowski M, Mlinaric-Rascan I, Feng GS et al (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med 178(6):2157–2163PubMedCrossRef Kozlowski M, Mlinaric-Rascan I, Feng GS et al (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med 178(6):2157–2163PubMedCrossRef
5.
6.
go back to reference Koretzky GA, Picus J, Schultz T, Weiss A (1991) Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88(6):2037–2041PubMedCrossRef Koretzky GA, Picus J, Schultz T, Weiss A (1991) Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88(6):2037–2041PubMedCrossRef
7.
go back to reference Majeti R, Xu Z, Parslow TG et al (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103(7):1059–1070PubMedCrossRef Majeti R, Xu Z, Parslow TG et al (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103(7):1059–1070PubMedCrossRef
8.
go back to reference Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338PubMedCrossRef Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338PubMedCrossRef
9.
go back to reference The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447(7145):661–678CrossRef The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447(7145):661–678CrossRef
10.
go back to reference Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedCrossRef Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedCrossRef
11.
go back to reference Hennig BJ, Fry AE, Hirai K et al (2008) PTPRC (CD45) variation and disease association studied using single nucleotide polymorphism tagging. Tissue antigens 71(5):458–463PubMedCrossRef Hennig BJ, Fry AE, Hirai K et al (2008) PTPRC (CD45) variation and disease association studied using single nucleotide polymorphism tagging. Tissue antigens 71(5):458–463PubMedCrossRef
12.
go back to reference Julia A, Ballina J, Canete JD et al (2008) Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum 58(8):2275–2286PubMedCrossRef Julia A, Ballina J, Canete JD et al (2008) Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum 58(8):2275–2286PubMedCrossRef
13.
go back to reference Concannon P, Onengut-Gumuscu S, Todd JA et al (2008) A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57(10):2858–2861PubMedCrossRef Concannon P, Onengut-Gumuscu S, Todd JA et al (2008) A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57(10):2858–2861PubMedCrossRef
14.
go back to reference Raychaudhuri S, Thomson BP, Remmers EF et al (2009) Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 41(12):1313–1318PubMedCrossRef Raychaudhuri S, Thomson BP, Remmers EF et al (2009) Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 41(12):1313–1318PubMedCrossRef
15.
go back to reference Carpino N, Turner S, Mekala D et al (2004) Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20(1):37–46PubMedCrossRef Carpino N, Turner S, Mekala D et al (2004) Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20(1):37–46PubMedCrossRef
16.
go back to reference Irie-Sasaki J, Sasaki T, Penninger JM (2003) CD45 regulated signaling pathways. Curr Top Med Chem 3(7):783–796PubMedCrossRef Irie-Sasaki J, Sasaki T, Penninger JM (2003) CD45 regulated signaling pathways. Curr Top Med Chem 3(7):783–796PubMedCrossRef
17.
go back to reference Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137PubMedCrossRef Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137PubMedCrossRef
18.
go back to reference Andersen JN, Jansen PG, Echwald SM et al (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. Faseb J 18(1):8–30PubMedCrossRef Andersen JN, Jansen PG, Echwald SM et al (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. Faseb J 18(1):8–30PubMedCrossRef
19.
go back to reference Matthews RJ, Bowne DB, Flores E, Thomas ML (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12(5):2396–2405PubMed Matthews RJ, Bowne DB, Flores E, Thomas ML (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12(5):2396–2405PubMed
20.
go back to reference Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM (1999) Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93(6):2013–2024PubMed Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM (1999) Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93(6):2013–2024PubMed
21.
go back to reference Cloutier JF, Veillette A (1996) Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. Embo J 15(18):4909–4918PubMed Cloutier JF, Veillette A (1996) Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. Embo J 15(18):4909–4918PubMed
22.
go back to reference Begovich AB, Carlton VE, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75(2):330–337PubMedCrossRef Begovich AB, Carlton VE, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75(2):330–337PubMedCrossRef
23.
go back to reference Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317–1319PubMedCrossRef Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317–1319PubMedCrossRef
24.
go back to reference Hill RJ, Zozulya S, Lu YL et al (2002) The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 30(3):237–244PubMedCrossRef Hill RJ, Zozulya S, Lu YL et al (2002) The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 30(3):237–244PubMedCrossRef
25.
go back to reference Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189(1):111–121PubMedCrossRef Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189(1):111–121PubMedCrossRef
26.
go back to reference Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T (1999) Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 29(12):3845–3854PubMedCrossRef Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T (1999) Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 29(12):3845–3854PubMedCrossRef
27.
go back to reference Wu J, Katrekar A, Honigberg LA et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281(16):11002–11010PubMedCrossRef Wu J, Katrekar A, Honigberg LA et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281(16):11002–11010PubMedCrossRef
28.
go back to reference Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273(21):13217–13222PubMedCrossRef Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273(21):13217–13222PubMedCrossRef
29.
go back to reference Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8(11):998–1004PubMedCrossRef Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8(11):998–1004PubMedCrossRef
30.
go back to reference Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A (2003) Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 23(6):2017–2028PubMedCrossRef Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A (2003) Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 23(6):2017–2028PubMedCrossRef
31.
go back to reference Yu X, Sun JP, He Y et al (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA 104(50):19767–19772PubMedCrossRef Yu X, Sun JP, He Y et al (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA 104(50):19767–19772PubMedCrossRef
32.
go back to reference Liu Y, Stanford SM, Jog SP et al (2009) Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain. Biochemistry 48(31):7525–7532PubMedCrossRef Liu Y, Stanford SM, Jog SP et al (2009) Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain. Biochemistry 48(31):7525–7532PubMedCrossRef
33.
go back to reference Tsai SJ, Sen U, Zhao L et al (2009) Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation. Biochemistry 48(22):4838–4845PubMedCrossRef Tsai SJ, Sen U, Zhao L et al (2009) Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation. Biochemistry 48(22):4838–4845PubMedCrossRef
34.
go back to reference Hasegawa K, Martin F, Huang G et al (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science (New York, NY) 303(5658):685–689 Hasegawa K, Martin F, Huang G et al (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science (New York, NY) 303(5658):685–689
35.
go back to reference Zikherman J, Hermiston M, Steiner D et al (2009) PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol 182(7):4093–4106PubMedCrossRef Zikherman J, Hermiston M, Steiner D et al (2009) PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol 182(7):4093–4106PubMedCrossRef
36.
go back to reference Rieck M, Arechiga A, Onengut-Gumuscu S et al (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 179(7):4704–4710PubMed Rieck M, Arechiga A, Onengut-Gumuscu S et al (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 179(7):4704–4710PubMed
37.
go back to reference Wu C, Orozco C, Boyer J et al (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10(11):R130PubMedCrossRef Wu C, Orozco C, Boyer J et al (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10(11):R130PubMedCrossRef
38.
go back to reference Kyogoku C, Langefeld CD, Ortmann WA et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75(3):504–507PubMedCrossRef Kyogoku C, Langefeld CD, Ortmann WA et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75(3):504–507PubMedCrossRef
39.
go back to reference Smyth D, Cooper JD, Collins JE et al (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53(11):3020–3023PubMedCrossRef Smyth D, Cooper JD, Collins JE et al (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53(11):3020–3023PubMedCrossRef
40.
go back to reference Orozco G, Sanchez E, Gonzalez-Gay MA et al (2005) Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 52(1):219–224PubMedCrossRef Orozco G, Sanchez E, Gonzalez-Gay MA et al (2005) Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 52(1):219–224PubMedCrossRef
41.
go back to reference Plenge RM, Padyukov L, Remmers EF et al (2005) Replication of putative candidate-gene associations with rheumatoid arthritis in >4, 000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 77(6):1044–1060PubMedCrossRef Plenge RM, Padyukov L, Remmers EF et al (2005) Replication of putative candidate-gene associations with rheumatoid arthritis in >4, 000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 77(6):1044–1060PubMedCrossRef
42.
go back to reference Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R (2005) Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves' disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol 62(6):679–682CrossRef Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R (2005) Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves' disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol 62(6):679–682CrossRef
43.
go back to reference Heward JM, Brand OJ, Barrett JC et al (2007) Association of PTPN22 haplotypes with Graves' disease. J Clin Endocrinol Metab 92(2):685–690PubMedCrossRef Heward JM, Brand OJ, Barrett JC et al (2007) Association of PTPN22 haplotypes with Graves' disease. J Clin Endocrinol Metab 92(2):685–690PubMedCrossRef
44.
go back to reference Velaga MR, Wilson V, Jennings CE et al (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 89(11):5862–5865PubMedCrossRef Velaga MR, Wilson V, Jennings CE et al (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 89(11):5862–5865PubMedCrossRef
45.
go back to reference Skinningsrud B, Husebye ES, Gervin K et al (2008) Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. Eur J Hum Genet 16(8):977–982PubMedCrossRef Skinningsrud B, Husebye ES, Gervin K et al (2008) Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. Eur J Hum Genet 16(8):977–982PubMedCrossRef
46.
go back to reference Canton I, Akhtar S, Gavalas NG et al (2005) A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun 6(7):584–587PubMedCrossRef Canton I, Akhtar S, Gavalas NG et al (2005) A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun 6(7):584–587PubMedCrossRef
47.
go back to reference LaBerge GS, Bennett DC, Fain PR, Spritz RA (2008) PTPN22 is genetically associated with risk of generalized vitiligo, but CTLA4 is not. J Invest Dermatol 128(7):1757–1762PubMedCrossRef LaBerge GS, Bennett DC, Fain PR, Spritz RA (2008) PTPN22 is genetically associated with risk of generalized vitiligo, but CTLA4 is not. J Invest Dermatol 128(7):1757–1762PubMedCrossRef
48.
go back to reference Vandiedonck C, Capdevielle C, Giraud M et al (2006) Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol 59(2):404–407PubMedCrossRef Vandiedonck C, Capdevielle C, Giraud M et al (2006) Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol 59(2):404–407PubMedCrossRef
49.
go back to reference Greve B, Hoffmann P, Illes Z et al (2009) The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol 70(7):540–542PubMedCrossRef Greve B, Hoffmann P, Illes Z et al (2009) The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol 70(7):540–542PubMedCrossRef
50.
go back to reference Chuang WY, Strobel P, Belharazem D et al (2009) The PTPN22(gain-of-function)+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun 10(8):667–672PubMedCrossRef Chuang WY, Strobel P, Belharazem D et al (2009) The PTPN22(gain-of-function)+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun 10(8):667–672PubMedCrossRef
51.
go back to reference Gourh P, Tan FK, Assassi S et al (2006) Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum 54(12):3945–3953PubMedCrossRef Gourh P, Tan FK, Assassi S et al (2006) Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum 54(12):3945–3953PubMedCrossRef
52.
go back to reference Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18(4):207–213PubMedCrossRef Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18(4):207–213PubMedCrossRef
53.
go back to reference Gregersen PK, Lee HS, Batliwalla F, Begovich AB (2006) PTPN22: setting thresholds for autoimmunity. Semin Immunol 18(4):214–223PubMedCrossRef Gregersen PK, Lee HS, Batliwalla F, Begovich AB (2006) PTPN22: setting thresholds for autoimmunity. Semin Immunol 18(4):214–223PubMedCrossRef
54.
go back to reference Kaufman KM, Kelly JA, Herring BJ et al (2006) Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 54(8):2533–2540PubMedCrossRef Kaufman KM, Kelly JA, Herring BJ et al (2006) Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 54(8):2533–2540PubMedCrossRef
55.
go back to reference Chelala C, Duchatelet S, Joffret ML et al (2007) PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56(2):522–526PubMedCrossRef Chelala C, Duchatelet S, Joffret ML et al (2007) PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56(2):522–526PubMedCrossRef
56.
go back to reference Ladner MB, Bottini N, Valdes AM, Noble JA (2005) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 66(1):60–64PubMedCrossRef Ladner MB, Bottini N, Valdes AM, Noble JA (2005) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 66(1):60–64PubMedCrossRef
57.
go back to reference Zheng W, She JX (2005) Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 54(3):906–908PubMedCrossRef Zheng W, She JX (2005) Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 54(3):906–908PubMedCrossRef
58.
go back to reference Saccucci P, Del Duca E, Rapini N et al (2008) Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue antigens 71(3):234–237PubMedCrossRef Saccucci P, Del Duca E, Rapini N et al (2008) Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue antigens 71(3):234–237PubMedCrossRef
59.
go back to reference Kahles H, Ramos-Lopez E, Lange B et al (2005) Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population. Eur J Endocrinol 153(6):895–899PubMedCrossRef Kahles H, Ramos-Lopez E, Lange B et al (2005) Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population. Eur J Endocrinol 153(6):895–899PubMedCrossRef
60.
go back to reference Santiago JL, Martinez A, de la Calle H et al (2007) Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet 8:54PubMedCrossRef Santiago JL, Martinez A, de la Calle H et al (2007) Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet 8:54PubMedCrossRef
61.
go back to reference Douroudis K, Prans E, Haller K et al (2008) Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue antigens 72(5):425–430PubMedCrossRef Douroudis K, Prans E, Haller K et al (2008) Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue antigens 72(5):425–430PubMedCrossRef
62.
go back to reference Fedetz M, Matesanz F, Caro-Maldonado A et al (2006) The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue antigens 67(5):430–433PubMedCrossRef Fedetz M, Matesanz F, Caro-Maldonado A et al (2006) The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue antigens 67(5):430–433PubMedCrossRef
63.
go back to reference Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50(5):264–266PubMedCrossRef Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50(5):264–266PubMedCrossRef
64.
go back to reference Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121PubMedCrossRef Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121PubMedCrossRef
65.
go back to reference Zhang ZH, Chen F, Zhang XL et al (2008) PTPN22 allele polymorphisms in 15 Chinese populations. Int J Immunogenet 35(6):433–437PubMedCrossRef Zhang ZH, Chen F, Zhang XL et al (2008) PTPN22 allele polymorphisms in 15 Chinese populations. Int J Immunogenet 35(6):433–437PubMedCrossRef
66.
go back to reference Lee HS, Korman BD, Le JM et al (2009) Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 60(2):364–371PubMedCrossRef Lee HS, Korman BD, Le JM et al (2009) Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 60(2):364–371PubMedCrossRef
67.
go back to reference McPartland JM, Norris RW, Kilpatrick CW (2007) Tempo and mode in the endocannaboinoid system. J Mol Evol 65(3):267–276PubMedCrossRef McPartland JM, Norris RW, Kilpatrick CW (2007) Tempo and mode in the endocannaboinoid system. J Mol Evol 65(3):267–276PubMedCrossRef
68.
go back to reference Chapman SJ, Khor CC, Vannberg FO et al (2006) PTPN22 and invasive bacterial disease. Nat Genet 38(5):499–500PubMedCrossRef Chapman SJ, Khor CC, Vannberg FO et al (2006) PTPN22 and invasive bacterial disease. Nat Genet 38(5):499–500PubMedCrossRef
69.
go back to reference Azarian M, Busson M, Rocha V et al (2008) The PTPN22 R620W polymorphism is associated with severe bacterial infections after human leukocyte antigen geno-identical haematopoietic stem-cell transplantations. Transplantation 85(12):1859–1862PubMedCrossRef Azarian M, Busson M, Rocha V et al (2008) The PTPN22 R620W polymorphism is associated with severe bacterial infections after human leukocyte antigen geno-identical haematopoietic stem-cell transplantations. Transplantation 85(12):1859–1862PubMedCrossRef
70.
go back to reference Gomez LM, Anaya JM, Martin J (2005) Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum Immunol 66(12):1242–1247PubMedCrossRef Gomez LM, Anaya JM, Martin J (2005) Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum Immunol 66(12):1242–1247PubMedCrossRef
71.
go back to reference Lamsyah H, Rueda B, Baassi L et al (2009) Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue antigens 74(3):228–232PubMedCrossRef Lamsyah H, Rueda B, Baassi L et al (2009) Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue antigens 74(3):228–232PubMedCrossRef
72.
go back to reference Criswell LA, Pfeiffer KA, Lum RF et al (2005) Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620 W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76(4):561–571PubMedCrossRef Criswell LA, Pfeiffer KA, Lum RF et al (2005) Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620 W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76(4):561–571PubMedCrossRef
73.
go back to reference Rueda B, Nunez C, Orozco G et al (2005) C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum Immunol 66(7):848–852PubMedCrossRef Rueda B, Nunez C, Orozco G et al (2005) C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum Immunol 66(7):848–852PubMedCrossRef
74.
go back to reference Zhernakova A, Eerligh P, Wijmenga C et al (2005) Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 6(6):459–461PubMedCrossRef Zhernakova A, Eerligh P, Wijmenga C et al (2005) Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 6(6):459–461PubMedCrossRef
75.
go back to reference Lee YH, Rho YH, Choi SJ et al (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford, England) 46(1):49–56CrossRef Lee YH, Rho YH, Choi SJ et al (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford, England) 46(1):49–56CrossRef
76.
go back to reference Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359(26):2767–2777PubMedCrossRef Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359(26):2767–2777PubMedCrossRef
77.
go back to reference van Oene M, Wintle RF, Liu X et al (2005) Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum 52(7):1993–1998PubMedCrossRef van Oene M, Wintle RF, Liu X et al (2005) Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum 52(7):1993–1998PubMedCrossRef
78.
go back to reference Prescott NJ, Fisher SA, Onnie C et al (2005) A general autoimmunity gene (PTPN22) is not associated with inflammatory bowel disease in a British population. Tissue antigens 66(4):318–320PubMedCrossRef Prescott NJ, Fisher SA, Onnie C et al (2005) A general autoimmunity gene (PTPN22) is not associated with inflammatory bowel disease in a British population. Tissue antigens 66(4):318–320PubMedCrossRef
79.
go back to reference Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40(8):955–962PubMedCrossRef Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40(8):955–962PubMedCrossRef
80.
go back to reference Baranathan V, Stanford MR, Vaughan RW et al (2007) The association of the PTPN22 620W polymorphism with Behcet's disease. Ann Rheum Dis 66(11):1531–1533PubMedCrossRef Baranathan V, Stanford MR, Vaughan RW et al (2007) The association of the PTPN22 620W polymorphism with Behcet's disease. Ann Rheum Dis 66(11):1531–1533PubMedCrossRef
81.
go back to reference Huffmeier U, Reis A, Steffens M et al (2006) Male restricted genetic association of variant R620W in PTPN22 with psoriatic arthritis. J Invest Dermatol 126(4):932–935PubMedCrossRef Huffmeier U, Reis A, Steffens M et al (2006) Male restricted genetic association of variant R620W in PTPN22 with psoriatic arthritis. J Invest Dermatol 126(4):932–935PubMedCrossRef
82.
go back to reference Butt C, Peddle L, Greenwood C et al (2006) Association of functional variants of PTPN22 and tp53 in psoriatic arthritis: a case-control study. Arthritis Res Ther 8(1):R27PubMedCrossRef Butt C, Peddle L, Greenwood C et al (2006) Association of functional variants of PTPN22 and tp53 in psoriatic arthritis: a case-control study. Arthritis Res Ther 8(1):R27PubMedCrossRef
83.
go back to reference Huffmeier U, Steffens M, Burkhardt H et al (2006) Evidence for susceptibility determinant(s) to psoriasis vulgaris in or near PTPN22 in German patients. J Med Genet 43(6):517–522PubMedCrossRef Huffmeier U, Steffens M, Burkhardt H et al (2006) Evidence for susceptibility determinant(s) to psoriasis vulgaris in or near PTPN22 in German patients. J Med Genet 43(6):517–522PubMedCrossRef
84.
go back to reference Smith RL, Warren RB, Eyre S et al (2008) Polymorphisms in the PTPN22 region are associated with psoriasis of early onset. Br J Dermatol 158(5):962–968PubMedCrossRef Smith RL, Warren RB, Eyre S et al (2008) Polymorphisms in the PTPN22 region are associated with psoriasis of early onset. Br J Dermatol 158(5):962–968PubMedCrossRef
85.
go back to reference McGonagle D, Aziz A, Dickie LJ, McDermott MF (2009) An integrated classification of pediatric inflammatory diseases, based on the concepts of autoinflammation and the immunological disease continuum. Pediatr Res 65(5 Pt 2):38R–45RPubMedCrossRef McGonagle D, Aziz A, Dickie LJ, McDermott MF (2009) An integrated classification of pediatric inflammatory diseases, based on the concepts of autoinflammation and the immunological disease continuum. Pediatr Res 65(5 Pt 2):38R–45RPubMedCrossRef
86.
go back to reference Kallberg H, Padyukov L, Plenge RM et al (2007) Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 80(5):867–875PubMedCrossRef Kallberg H, Padyukov L, Plenge RM et al (2007) Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 80(5):867–875PubMedCrossRef
87.
go back to reference Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P (2004) A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 5(8):678–680PubMedCrossRef Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P (2004) A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 5(8):678–680PubMedCrossRef
88.
go back to reference Carlton VE, Hu X, Chokkalingam AP et al (2005) PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 77(4):567–581PubMedCrossRef Carlton VE, Hu X, Chokkalingam AP et al (2005) PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 77(4):567–581PubMedCrossRef
89.
go back to reference Michou L, Lasbleiz S, Rat AC et al (2007) Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA 104(5):1649–1654PubMedCrossRef Michou L, Lasbleiz S, Rat AC et al (2007) Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA 104(5):1649–1654PubMedCrossRef
90.
go back to reference Zoledziewska M, Perra C, Orru V et al (2008) Further evidence of a primary, causal association of the PTPN22 620 W variant with type 1 diabetes. Diabetes 57(1):229–234PubMedCrossRef Zoledziewska M, Perra C, Orru V et al (2008) Further evidence of a primary, causal association of the PTPN22 620 W variant with type 1 diabetes. Diabetes 57(1):229–234PubMedCrossRef
91.
go back to reference Smyth DJ, Cooper JD, Howson JM et al (2008) PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes 57(6):1730–1737PubMedCrossRef Smyth DJ, Cooper JD, Howson JM et al (2008) PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes 57(6):1730–1737PubMedCrossRef
92.
go back to reference Orru V, Tsai SJ, Rueda B et al (2009) A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18(3):569–579PubMedCrossRef Orru V, Tsai SJ, Rueda B et al (2009) A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18(3):569–579PubMedCrossRef
93.
go back to reference Kawasaki E, Awata T, Ikegami H et al (2006) Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet 140(6):586–593PubMedCrossRef Kawasaki E, Awata T, Ikegami H et al (2006) Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet 140(6):586–593PubMedCrossRef
94.
go back to reference Cinek O, Hradsky O, Ahmedov G et al (2007) No independent role of the -1123 G > C and +2740 A > G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res Clin Pract 76(2):297–303PubMedCrossRef Cinek O, Hradsky O, Ahmedov G et al (2007) No independent role of the -1123 G > C and +2740 A > G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res Clin Pract 76(2):297–303PubMedCrossRef
95.
go back to reference Steck AK, Liu SY, McFann K et al (2006) Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 7(5):274–278PubMedCrossRef Steck AK, Liu SY, McFann K et al (2006) Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 7(5):274–278PubMedCrossRef
96.
go back to reference Morgan AW, Thomson W, Martin SG et al (2009) Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum 60(9):2565–2576PubMedCrossRef Morgan AW, Thomson W, Martin SG et al (2009) Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum 60(9):2565–2576PubMedCrossRef
97.
go back to reference Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW (2008) Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res Ther 10(3):R52PubMedCrossRef Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW (2008) Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res Ther 10(3):R52PubMedCrossRef
98.
go back to reference Mahdi H, Fisher BA, Kallberg H et al (2009) Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat Genet 41(12):1319–1324PubMedCrossRef Mahdi H, Fisher BA, Kallberg H et al (2009) Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat Genet 41(12):1319–1324PubMedCrossRef
99.
go back to reference Lempainen J, Vaarala O, Makela M et al (2009) Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. J Autoimmun 33(2):155–164PubMedCrossRef Lempainen J, Vaarala O, Makela M et al (2009) Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. J Autoimmun 33(2):155–164PubMedCrossRef
100.
go back to reference Pierer M, Kaltenhauser S, Arnold S et al (2006) Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients. Arthritis Res Ther 8(3):R75PubMedCrossRef Pierer M, Kaltenhauser S, Arnold S et al (2006) Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients. Arthritis Res Ther 8(3):R75PubMedCrossRef
101.
go back to reference Lie BA, Viken MK, Odegard S et al (2007) Associations between the PTPN22 1858C->T polymorphism and radiographic joint destruction in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis 66(12):1604–1609PubMedCrossRef Lie BA, Viken MK, Odegard S et al (2007) Associations between the PTPN22 1858C->T polymorphism and radiographic joint destruction in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis 66(12):1604–1609PubMedCrossRef
102.
go back to reference Hermann R, Lipponen K, Kiviniemi M et al (2006) Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 49(6):1198–1208PubMedCrossRef Hermann R, Lipponen K, Kiviniemi M et al (2006) Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 49(6):1198–1208PubMedCrossRef
103.
go back to reference Butty V, Campbell C, Mathis D, Benoist C (2008) Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). Diabetes 57(9):2348–2359PubMedCrossRef Butty V, Campbell C, Mathis D, Benoist C (2008) Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). Diabetes 57(9):2348–2359PubMedCrossRef
104.
go back to reference Steck AK, Baschal EE, Jasinski JM, Boehm BO, Bottini N, Concannon P, Julier C, Morahan G, Noble JA, Polychronakos C, She JX, Eisenbarth GS; Type I Diabetes Genetics Consortium (2009) Rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetesassociated haplotypes with preliminary evidence for an additional protective haplotype. Genes Immun Suppl 1:S21–S26PubMedCrossRef Steck AK, Baschal EE, Jasinski JM, Boehm BO, Bottini N, Concannon P, Julier C, Morahan G, Noble JA, Polychronakos C, She JX, Eisenbarth GS; Type I Diabetes Genetics Consortium (2009) Rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetesassociated haplotypes with preliminary evidence for an additional protective haplotype. Genes Immun Suppl 1:S21–S26PubMedCrossRef
105.
go back to reference Aarnisalo J, Treszl A, Svec P et al (2008) Reduced CD4(+)T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J Autoimmun 31(1):13–21PubMedCrossRef Aarnisalo J, Treszl A, Svec P et al (2008) Reduced CD4(+)T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J Autoimmun 31(1):13–21PubMedCrossRef
106.
go back to reference Lefvert AK, Zhao Y, Ramanujam R et al (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197(2):110–113PubMedCrossRef Lefvert AK, Zhao Y, Ramanujam R et al (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197(2):110–113PubMedCrossRef
107.
go back to reference Nielsen C, Barington T, Husby S, Lillevang ST (2007) Expression of human PTPN22 alleles. Genes Immun 8(2):131–137PubMedCrossRef Nielsen C, Barington T, Husby S, Lillevang ST (2007) Expression of human PTPN22 alleles. Genes Immun 8(2):131–137PubMedCrossRef
108.
go back to reference Zhang J, Salojin K, Delovitch TL (1998) Sequestration of CD4-associated Lck from the TCR complex may elicit T cell hyporesponsiveness in nonobese diabetic mice. J Immunol 160(3):1148–1157PubMed Zhang J, Salojin K, Delovitch TL (1998) Sequestration of CD4-associated Lck from the TCR complex may elicit T cell hyporesponsiveness in nonobese diabetic mice. J Immunol 160(3):1148–1157PubMed
109.
go back to reference Buchs AE, Rapoport MJ (2000) T cell signaling and autoimmune diabetes. J Pediatr Endocrinol Metab 13(9):1549–1554PubMed Buchs AE, Rapoport MJ (2000) T cell signaling and autoimmune diabetes. J Pediatr Endocrinol Metab 13(9):1549–1554PubMed
110.
go back to reference Sakaguchi N, Takahashi T, Hata H et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965):454–460PubMedCrossRef Sakaguchi N, Takahashi T, Hata H et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965):454–460PubMedCrossRef
111.
go back to reference Siggs OM, Miosge LA, Yates AL et al (2007) Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27(6):912–926PubMedCrossRef Siggs OM, Miosge LA, Yates AL et al (2007) Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27(6):912–926PubMedCrossRef
112.
go back to reference Hsu LY, Tan YX, Xiao Z, Malissen M, Weiss A (2009) A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity. J Exp Med 206(11):2527–2541PubMedCrossRef Hsu LY, Tan YX, Xiao Z, Malissen M, Weiss A (2009) A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity. J Exp Med 206(11):2527–2541PubMedCrossRef
113.
go back to reference Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935PubMedCrossRef Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935PubMedCrossRef
114.
go back to reference Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735PubMedCrossRef Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735PubMedCrossRef
115.
go back to reference Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39(3):329–337PubMedCrossRef Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39(3):329–337PubMedCrossRef
116.
go back to reference Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedCrossRef Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedCrossRef
117.
go back to reference Xie Y, Liu Y, Gong G et al (2008) Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett 18(9):2840–2844PubMedCrossRef Xie Y, Liu Y, Gong G et al (2008) Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett 18(9):2840–2844PubMedCrossRef
118.
go back to reference Wu S, Bottini M, Rickert RC, Mustelin T, Tautz L (2009) In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem 4(3):440–444PubMedCrossRef Wu S, Bottini M, Rickert RC, Mustelin T, Tautz L (2009) In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem 4(3):440–444PubMedCrossRef
119.
go back to reference Sfar I, Gorgi Y, Aouadi H et al (2009) The PTPN22 C1858T (R620W) functional polymorphism in kidney transplantation. Transplant Proc 41(2):657–659PubMedCrossRef Sfar I, Gorgi Y, Aouadi H et al (2009) The PTPN22 C1858T (R620W) functional polymorphism in kidney transplantation. Transplant Proc 41(2):657–659PubMedCrossRef
120.
go back to reference Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91(1):123–127PubMedCrossRef Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91(1):123–127PubMedCrossRef
121.
go back to reference Chatenoud L (2006) CD3-specific antibodies as promising tools to aim at immune tolerance in the clinic. Int Rev Immunol 25(3–4):215–233PubMedCrossRef Chatenoud L (2006) CD3-specific antibodies as promising tools to aim at immune tolerance in the clinic. Int Rev Immunol 25(3–4):215–233PubMedCrossRef
122.
go back to reference Hermiston ML, Zikherman J, Tan AL et al (2009) Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc Natl Acad Sci USA 106(2):546–551PubMedCrossRef Hermiston ML, Zikherman J, Tan AL et al (2009) Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc Natl Acad Sci USA 106(2):546–551PubMedCrossRef
123.
go back to reference Hermiston ML, Tan AL, Gupta VA, Majeti R, Weiss A (2005) The juxtamembrane wedge negatively regulates CD45 function in B cells. Immunity 23(6):635–647PubMedCrossRef Hermiston ML, Tan AL, Gupta VA, Majeti R, Weiss A (2005) The juxtamembrane wedge negatively regulates CD45 function in B cells. Immunity 23(6):635–647PubMedCrossRef
124.
go back to reference Gupta VA, Hermiston ML, Cassafer G, Daikh DI, Weiss A (2008) B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency. J Exp Med 205(12):2755–2761PubMedCrossRef Gupta VA, Hermiston ML, Cassafer G, Daikh DI, Weiss A (2008) B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency. J Exp Med 205(12):2755–2761PubMedCrossRef
125.
go back to reference Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 98(11):2549–2557PubMedCrossRef Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 98(11):2549–2557PubMedCrossRef
126.
go back to reference Kammer GM, Perl A, Richardson BC, Tsokos GC (2002) Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 46(5):1139–1154PubMedCrossRef Kammer GM, Perl A, Richardson BC, Tsokos GC (2002) Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 46(5):1139–1154PubMedCrossRef
127.
go back to reference Khan IU, Tsokos GC, Kammer GM (2003) Abnormal B cell signal transduction in systemic lupus erythematosus. Curr Dir Autoimmun 6:89–104PubMedCrossRef Khan IU, Tsokos GC, Kammer GM (2003) Abnormal B cell signal transduction in systemic lupus erythematosus. Curr Dir Autoimmun 6:89–104PubMedCrossRef
Metadata
Title
Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases
Authors
Stephanie M. Stanford
Tomas M. Mustelin
Nunzio Bottini
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 2/2010
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-010-0201-4

Other articles of this Issue 2/2010

Seminars in Immunopathology 2/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.