Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Lung Cancer | Research

Synergistic anticancer activity of cisplatin combined with tannic acid enhances apoptosis in lung cancer through the PERK-ATF4 pathway

Authors: Xiang Zheng, Lei Yang, Wei Zhai, Nana Geng, Zhimin Zhang, Xueying Li, Mingsong Wu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Cisplatin (CDDP) is a common anticancer drug whose side effects limit its clinical applications. Tannins (TA) are plant-derived polyphenols that inhibit tumor growth in different types of cancer. Here, we evaluated the anticancer effect of TA combined with CDDP on lung cancer cell lines (GLC-82 and H1299) and investigated the underlying molecular mechanism of endoplasmic reticulum (ER) stress-induced apoptosis.

Methods

Cell lines were treated with CDDP, TA, and CDDP + TA, and the effect of the combination was assessed using MTT assay and observed under light and fluorescence microscopes. Cell apoptosis was detected by flow cytometry, and the levels of ERS apoptosis pathway related genes were valuated by qRT-PCR and western blotting. The effects of the drug combination on the tumors of nude mice injected with H1299 cells were investigated, and the expression of key factors in the ER stress apoptotic pathway was investigated.

Results

The combination of CDDP and TA significantly inhibited lung cancer cell viability indicating a synergistic antitumoral effect. The mRNA and protein expression levels of key ER stress factors in the CDDP + TA group were considerably higher than those in the CDDP and TA groups, the tumor volume in tumor-bearing mice was the smallest, and the number of apoptotic cells and the protein expression levels of the key ER stress in the combination group were considerably higher.

Conclusions

The combination of TA and CDDP may produce synergistic antitumoral effects mediated by the PERK-ATF4-CHOP apoptotic axis, suggesting a novel adjuvant treatment for lung cancer.
Literature
2.
go back to reference Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef
3.
go back to reference Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552–9.PubMedCrossRef Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552–9.PubMedCrossRef
4.
go back to reference Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16(6):653–60.PubMedCrossRef Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16(6):653–60.PubMedCrossRef
5.
go back to reference Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: the possible mechanisms and interventions. Exp Neurol. 2020;324: 113118.PubMedCrossRef Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: the possible mechanisms and interventions. Exp Neurol. 2020;324: 113118.PubMedCrossRef
6.
go back to reference Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016;106:27–36.PubMedCrossRef Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016;106:27–36.PubMedCrossRef
7.
go back to reference Shen N, Yang C, Zhang X, Tang Z, Chen X. Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater. 2021;135:543–55.PubMedCrossRef Shen N, Yang C, Zhang X, Tang Z, Chen X. Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater. 2021;135:543–55.PubMedCrossRef
8.
go back to reference Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther. 2012;136(1):35–55.PubMedCrossRef Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther. 2012;136(1):35–55.PubMedCrossRef
9.
go back to reference Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117(22):13566–638.PubMedCrossRef Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117(22):13566–638.PubMedCrossRef
10.
go back to reference Kip B, Tunc CU, Aydin O. Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model. Ultrason Sonochem. 2022;82: 105903.PubMedCrossRef Kip B, Tunc CU, Aydin O. Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model. Ultrason Sonochem. 2022;82: 105903.PubMedCrossRef
11.
go back to reference Kanai M, Hatano E, Kobayashi S, Fujiwara Y, Marubashi S, Miyamoto A, Shiomi H, Kubo S, Ikuta S, Yanagimoto H, Terajima H, Ikoma H, Sakai D, Kodama Y, Seo S, Morita S, Ajiki T, Nagano H, Ioka T. A multi-institution phase II study of gemcitabine/cisplatin/S-1 (GCS) combination chemotherapy for patients with advanced biliary tract cancer (KHBO 1002). Cancer Chemother Pharmacol. 2015;75(2):293–300.PubMedCrossRef Kanai M, Hatano E, Kobayashi S, Fujiwara Y, Marubashi S, Miyamoto A, Shiomi H, Kubo S, Ikuta S, Yanagimoto H, Terajima H, Ikoma H, Sakai D, Kodama Y, Seo S, Morita S, Ajiki T, Nagano H, Ioka T. A multi-institution phase II study of gemcitabine/cisplatin/S-1 (GCS) combination chemotherapy for patients with advanced biliary tract cancer (KHBO 1002). Cancer Chemother Pharmacol. 2015;75(2):293–300.PubMedCrossRef
12.
go back to reference Choi HS, Kim YK, Yun PY. Cisplatin plus cetuximab inhibits cisplatin-resistant human oral squamous cell carcinoma cell migration and proliferation but does not enhance apoptosis. Int J Mol Sci. 2021;22(15):8167.PubMedPubMedCentralCrossRef Choi HS, Kim YK, Yun PY. Cisplatin plus cetuximab inhibits cisplatin-resistant human oral squamous cell carcinoma cell migration and proliferation but does not enhance apoptosis. Int J Mol Sci. 2021;22(15):8167.PubMedPubMedCentralCrossRef
13.
go back to reference Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J Drug Target. 2020;28(9):913–22.PubMedCrossRef Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J Drug Target. 2020;28(9):913–22.PubMedCrossRef
14.
go back to reference Lin M, Pan C, Xu W, Li J, Zhu X. Leonurine promotes cisplatin sensitivity in human cervical cancer cells through increasing apoptosis and inhibiting drug-resistant proteins. Drug Des Devel Ther. 2020;14:1885–95.PubMedPubMedCentralCrossRef Lin M, Pan C, Xu W, Li J, Zhu X. Leonurine promotes cisplatin sensitivity in human cervical cancer cells through increasing apoptosis and inhibiting drug-resistant proteins. Drug Des Devel Ther. 2020;14:1885–95.PubMedPubMedCentralCrossRef
15.
go back to reference Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23(3):1532.PubMedPubMedCentralCrossRef Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23(3):1532.PubMedPubMedCentralCrossRef
16.
go back to reference Sp N, Kang DY, Jo ES, Rugamba A, Kim WS, Park YM, Hwang DY, Yoo JS, Liu Q, Jang KJ, Yang YM. Tannic acid promotes TRAIL-induced extrinsic apoptosis by regulating mitochondrial ROS in human embryonic carcinoma cells. Cells. 2020;9(2):282.PubMedPubMedCentralCrossRef Sp N, Kang DY, Jo ES, Rugamba A, Kim WS, Park YM, Hwang DY, Yoo JS, Liu Q, Jang KJ, Yang YM. Tannic acid promotes TRAIL-induced extrinsic apoptosis by regulating mitochondrial ROS in human embryonic carcinoma cells. Cells. 2020;9(2):282.PubMedPubMedCentralCrossRef
17.
go back to reference Nagesh PKB, Hatami E, Chowdhury P, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers. 2018;10(3):68.PubMedPubMedCentralCrossRef Nagesh PKB, Hatami E, Chowdhury P, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers. 2018;10(3):68.PubMedPubMedCentralCrossRef
18.
go back to reference Zhang J, Cui L, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Zhang Y, Chu L. Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 2017;93:1253–60.PubMedCrossRef Zhang J, Cui L, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Zhang Y, Chu L. Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 2017;93:1253–60.PubMedCrossRef
19.
go back to reference Tikoo K, Sane MS, Gupta C. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol. 2011;251(3):191–200.PubMedCrossRef Tikoo K, Sane MS, Gupta C. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol. 2011;251(3):191–200.PubMedCrossRef
20.
go back to reference Geng N, Zheng X, Wu M, Yang L, Li X, Chen J. Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis. Oncol Rep. 2019;42(5):2108–16.PubMed Geng N, Zheng X, Wu M, Yang L, Li X, Chen J. Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis. Oncol Rep. 2019;42(5):2108–16.PubMed
21.
go back to reference Sun Y, Zhang T, Wang B, Li H, Li P. Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs. 2012;23(9):979–90.PubMedCrossRef Sun Y, Zhang T, Wang B, Li H, Li P. Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs. 2012;23(9):979–90.PubMedCrossRef
22.
go back to reference Hatami E, Nagesh PKB, Chowdhury P, Chauhan SC, Jaggi M, Samarasinghe AE, Yallapu MM. Tannic acid-lung fluid assemblies promote interaction and delivery of drugs to lung cancer cells. Pharmaceutics. 2018;10(3):111.PubMedPubMedCentralCrossRef Hatami E, Nagesh PKB, Chowdhury P, Chauhan SC, Jaggi M, Samarasinghe AE, Yallapu MM. Tannic acid-lung fluid assemblies promote interaction and delivery of drugs to lung cancer cells. Pharmaceutics. 2018;10(3):111.PubMedPubMedCentralCrossRef
23.
go back to reference Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer. 2011;71(3):291–7.PubMedCrossRef Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer. 2011;71(3):291–7.PubMedCrossRef
24.
go back to reference Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083.PubMedCrossRef Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083.PubMedCrossRef
25.
go back to reference Yan C, Luo Z, Li W, Li X, Dallmann R, Kurihara H, Li YF, He RR. Disturbed Yin-Yang balance: stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B. 2020;10(3):383–98.PubMedCrossRef Yan C, Luo Z, Li W, Li X, Dallmann R, Kurihara H, Li YF, He RR. Disturbed Yin-Yang balance: stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B. 2020;10(3):383–98.PubMedCrossRef
26.
go back to reference Sarode GS, Sarode SC, Patil S. The Yin-Yang principle of endoplasmic reticulum stress and oral cancer. J Contemp Dent Pract. 2016;17(7):513–4.PubMedCrossRef Sarode GS, Sarode SC, Patil S. The Yin-Yang principle of endoplasmic reticulum stress and oral cancer. J Contemp Dent Pract. 2016;17(7):513–4.PubMedCrossRef
27.
go back to reference Kumari N, Reabroi S, North BJ. Unraveling the molecular nexus between GPCRs. ERS, and EMT, Mediators Inflamm. 2021;2021:6655417.PubMed Kumari N, Reabroi S, North BJ. Unraveling the molecular nexus between GPCRs. ERS, and EMT, Mediators Inflamm. 2021;2021:6655417.PubMed
28.
go back to reference Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066–77.PubMedPubMedCentralCrossRef Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066–77.PubMedPubMedCentralCrossRef
29.
go back to reference Shi S, Tan P, Yan B, Gao R, Zhao J, Wang J, Guo J, Li N, Ma Z. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells. Oncol Rep. 2016;35(5):2606–14.PubMedPubMedCentralCrossRef Shi S, Tan P, Yan B, Gao R, Zhao J, Wang J, Guo J, Li N, Ma Z. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells. Oncol Rep. 2016;35(5):2606–14.PubMedPubMedCentralCrossRef
30.
go back to reference Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 2012;51(7):822–30.PubMedCrossRef Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 2012;51(7):822–30.PubMedCrossRef
31.
go back to reference Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, Wang XY, Dai Z, Peng YF, Gu CY, Qiu SJ, Fan J. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy. 2011;7(10):1159–72.PubMedCrossRef Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, Wang XY, Dai Z, Peng YF, Gu CY, Qiu SJ, Fan J. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy. 2011;7(10):1159–72.PubMedCrossRef
32.
go back to reference Zhao Y, Zhu C, Li X, Zhang Z, Yuan Y, Ni Y, Liu T, Deng S, Zhao J, Wang Y. Asterosaponin 1 induces endoplasmic reticulum stress-associated apoptosis in A549 human lung cancer cells. Oncol Rep. 2011;26(4):919–24.PubMed Zhao Y, Zhu C, Li X, Zhang Z, Yuan Y, Ni Y, Liu T, Deng S, Zhao J, Wang Y. Asterosaponin 1 induces endoplasmic reticulum stress-associated apoptosis in A549 human lung cancer cells. Oncol Rep. 2011;26(4):919–24.PubMed
33.
go back to reference Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S, Yan D, Towner R, Chen H. Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diab Vasc Dis Res. 2017;14(1):14–23.PubMedCrossRef Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S, Yan D, Towner R, Chen H. Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diab Vasc Dis Res. 2017;14(1):14–23.PubMedCrossRef
34.
go back to reference Matsuo K, Gray MJ, Yang DY, Srivastava SA, Tripathi PB, Sonoda LA, Yoo EJ, Dubeau L, Lee AS, Lin YG. The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol. 2013;128(3):552–9.PubMedCrossRef Matsuo K, Gray MJ, Yang DY, Srivastava SA, Tripathi PB, Sonoda LA, Yoo EJ, Dubeau L, Lee AS, Lin YG. The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol. 2013;128(3):552–9.PubMedCrossRef
35.
36.
go back to reference Lin JC, Yang PM, Liu TP. PERK/ATF4-dependent ZFAS1 upregulation is associated with sorafenib resistance in hepatocellular carcinoma cells. Int J Mol Sci. 2021;22(11):5848.PubMedPubMedCentralCrossRef Lin JC, Yang PM, Liu TP. PERK/ATF4-dependent ZFAS1 upregulation is associated with sorafenib resistance in hepatocellular carcinoma cells. Int J Mol Sci. 2021;22(11):5848.PubMedPubMedCentralCrossRef
37.
go back to reference Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.PubMedCrossRef Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.PubMedCrossRef
38.
go back to reference Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002;3(1):99–111.PubMedCrossRef Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002;3(1):99–111.PubMedCrossRef
39.
go back to reference Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. Int J Mol Sci. 2021;22(16):8885.PubMedPubMedCentralCrossRef Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. Int J Mol Sci. 2021;22(16):8885.PubMedPubMedCentralCrossRef
40.
go back to reference Awuah Boadi E, Shin S, Bandyopadhyay BC. Tannic acid attenuates vascular calcification-induced proximal tubular cells damage through paracrine signaling. Biomed Pharmacother. 2021;140:111762.PubMedCrossRef Awuah Boadi E, Shin S, Bandyopadhyay BC. Tannic acid attenuates vascular calcification-induced proximal tubular cells damage through paracrine signaling. Biomed Pharmacother. 2021;140:111762.PubMedCrossRef
41.
go back to reference Chowdhury P, Nagesh PKB, Hatami E, Wagh S, Dan N, Tripathi MK, Khan S, Hafeez BB, Meibohm B, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J Colloid Interface Sci. 2019;535:133–48.PubMedCrossRef Chowdhury P, Nagesh PKB, Hatami E, Wagh S, Dan N, Tripathi MK, Khan S, Hafeez BB, Meibohm B, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J Colloid Interface Sci. 2019;535:133–48.PubMedCrossRef
42.
go back to reference Bortot B, Mongiat M, Valencic E, Dal Monego S, Licastro D, Crosera M, Adami G, Rampazzo E, Ricci G, Romano F, Severini GM, Biffi S. Nanotechnology-based cisplatin intracellular delivery to enhance chemo-sensitivity of ovarian cancer. Int J Nanomed. 2020;15:4793–810.CrossRef Bortot B, Mongiat M, Valencic E, Dal Monego S, Licastro D, Crosera M, Adami G, Rampazzo E, Ricci G, Romano F, Severini GM, Biffi S. Nanotechnology-based cisplatin intracellular delivery to enhance chemo-sensitivity of ovarian cancer. Int J Nanomed. 2020;15:4793–810.CrossRef
43.
go back to reference Agnello L, Tortorella S, d’Argenio A, Carbone C, Camorani S, Locatelli E, Auletta L, Sorrentino D, Fedele M, Zannetti A, Franchini MC, Cerchia L. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res. 2021;40(1):239.PubMedPubMedCentralCrossRef Agnello L, Tortorella S, d’Argenio A, Carbone C, Camorani S, Locatelli E, Auletta L, Sorrentino D, Fedele M, Zannetti A, Franchini MC, Cerchia L. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res. 2021;40(1):239.PubMedPubMedCentralCrossRef
Metadata
Title
Synergistic anticancer activity of cisplatin combined with tannic acid enhances apoptosis in lung cancer through the PERK-ATF4 pathway
Authors
Xiang Zheng
Lei Yang
Wei Zhai
Nana Geng
Zhimin Zhang
Xueying Li
Mingsong Wu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01420-z

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue