Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Human Papillomavirus | Research

siRNA-E6 sensitizes HPV-16-related cervical cancer through Oxaliplatin: an in vitro study on anti-cancer combination therapy

Authors: Parisa Shiri Aghbash, Nima Hemmat, Behzad Baradaran, Hossein Bannazadeh Baghi

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Persistent infection with high-risk Human papillomaviruses (HPV), such as hr-HPV-16 and hr-HPV-18, lead to cervical cancer, the fourth most common cancer in the world. In the present study, we investigated the alteration of E6 oncogene expression by E6-specific short interfering RNA (siRNA) combined with Oxaliplatin.

Methods

The cervical cancer cell line, CaSki, was transfected with E6-siRNA, then treated with Oxaliplatin. The cellular genes, such as p53, MMP9, Nanog, and caspases expression, were assessed by quantitative real-time PCR. The cell death rate, cell cycle, and cell viability were assessed by Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, colony formation assay and scratch test determined the stemness ability and cell metastasis, respectively.

Results

Combination therapy increased the re-expression of genes involved in the p53-dependent apoptosis pathway (increase in apoptosis to 44.2%), and reduced stemness and metastasis ability compared to either siRNA or Oxaliplatin monotherapy. Together, our results demonstrate that E6-siRNA and Oxaliplatin combination increased the cervical cancer cells’ sensitivity to Oxaliplatin and decreased the survival rate, proliferation, and metastasis, and consequently escalated apoptosis rate, induced cell cycle arrest in the sub-G1 stage, and reduced the chemotherapy drug dosage.

Conclusion

Inhibition of E6 oncogene expression and subsequent E6-siRNA with Oxaliplatin combination therapy could be a novel strategy for cervical cancer treatment.

Graphical Abstract

Literature
1.
go back to reference Dürst M, Gissmann L, Ikenberg H, Zur HH. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci. 1983;80(12):3812–5.CrossRef Dürst M, Gissmann L, Ikenberg H, Zur HH. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci. 1983;80(12):3812–5.CrossRef
2.
go back to reference Huang Y, Liu R, Han X, Hou X, Tian Y, Zhang W. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. 2022;18(1):112.CrossRef Huang Y, Liu R, Han X, Hou X, Tian Y, Zhang W. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. 2022;18(1):112.CrossRef
3.
go back to reference Almeida AM, Queiroz JA, Sousa F, Sousa Â. Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today. 2019;24(10):2044–57.CrossRef Almeida AM, Queiroz JA, Sousa F, Sousa Â. Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today. 2019;24(10):2044–57.CrossRef
4.
go back to reference Chan PK, Picconi MA, Cheung TH, Giovannelli L, Park JS. Laboratory and clinical aspects of human papillomavirus testing. Crit Rev Clin Lab Sci. 2012;49(4):117–36.CrossRef Chan PK, Picconi MA, Cheung TH, Giovannelli L, Park JS. Laboratory and clinical aspects of human papillomavirus testing. Crit Rev Clin Lab Sci. 2012;49(4):117–36.CrossRef
5.
go back to reference Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, et al. The papillomavirus episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res. 2017;45(D1):D499–506.CrossRef Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, et al. The papillomavirus episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res. 2017;45(D1):D499–506.CrossRef
6.
go back to reference Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, et al. The role of Th17 cells in viral infections. Int Immunopharmacol. 2021;91:107331.CrossRef Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, et al. The role of Th17 cells in viral infections. Int Immunopharmacol. 2021;91:107331.CrossRef
7.
go back to reference Hemmat N, Mokhtarzadeh A, Aghazadeh M, Jadidi-Niaragh F, Baradaran B, Bannazadeh BH. Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep. 2020;47(6):4553–68.CrossRef Hemmat N, Mokhtarzadeh A, Aghazadeh M, Jadidi-Niaragh F, Baradaran B, Bannazadeh BH. Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep. 2020;47(6):4553–68.CrossRef
8.
go back to reference Sailer C, Offensperger F, Julier A, Kammer K-M, Walker-Gray R, Gold MG, et al. Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun. 2018;9(1):1–12.CrossRef Sailer C, Offensperger F, Julier A, Kammer K-M, Walker-Gray R, Gold MG, et al. Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun. 2018;9(1):1–12.CrossRef
10.
go back to reference Asadzadeh Z, Mansoori B, Mohammadi A, Kazemi T, Mokhtarzadeh A, Shanehbandi D, et al. The combination effect of Prominin1 (CD133) suppression and Oxaliplatin treatment in colorectal cancer therapy. Biomed Pharmacother. 2021;137: 111364.CrossRef Asadzadeh Z, Mansoori B, Mohammadi A, Kazemi T, Mokhtarzadeh A, Shanehbandi D, et al. The combination effect of Prominin1 (CD133) suppression and Oxaliplatin treatment in colorectal cancer therapy. Biomed Pharmacother. 2021;137: 111364.CrossRef
11.
go back to reference Xu C, Liu W, Hu Y, Li W, Di W. Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy. Theranostics. 2020;10(7):3325.CrossRef Xu C, Liu W, Hu Y, Li W, Di W. Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy. Theranostics. 2020;10(7):3325.CrossRef
12.
go back to reference Li F, Wang Y, Chen W-l, Wang D-d, Zhou Y-j, You B-g, et al. Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment. Theranostics. 2019;9(20):5886.CrossRef Li F, Wang Y, Chen W-l, Wang D-d, Zhou Y-j, You B-g, et al. Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment. Theranostics. 2019;9(20):5886.CrossRef
13.
go back to reference Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.CrossRef Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.CrossRef
14.
go back to reference Cao S, Lin C, Liang S, Tan CH, Er Saw P, Xu X. Enhancing chemotherapy by RNA interference. BIO Integr. 2020;1(2):64–81.CrossRef Cao S, Lin C, Liang S, Tan CH, Er Saw P, Xu X. Enhancing chemotherapy by RNA interference. BIO Integr. 2020;1(2):64–81.CrossRef
15.
go back to reference Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696–709.CrossRef Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696–709.CrossRef
16.
go back to reference Yoshiba T, Saga Y, Urabe M, Uchibor R, Matsubara S, Fujiwara H, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019;17(2):2197–206. Yoshiba T, Saga Y, Urabe M, Uchibor R, Matsubara S, Fujiwara H, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019;17(2):2197–206.
17.
go back to reference Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.CrossRef Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.CrossRef
18.
go back to reference Jung HS, Shin YK. The potential RNAi-based combination therapeutics. Arch Pharmacal Res. 2011;34(1):1–2.CrossRef Jung HS, Shin YK. The potential RNAi-based combination therapeutics. Arch Pharmacal Res. 2011;34(1):1–2.CrossRef
19.
go back to reference Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, et al. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. Artif Cells Nanomed Biotechnol. 2018;46(sup2):727–36.CrossRef Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, et al. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. Artif Cells Nanomed Biotechnol. 2018;46(sup2):727–36.CrossRef
20.
go back to reference Zhao X, Sun W, Ren Y, Lu Z. Therapeutic potential of p53 reactivation in cervical cancer. Crit Rev Oncol Hematol. 2021;157:103182.CrossRef Zhao X, Sun W, Ren Y, Lu Z. Therapeutic potential of p53 reactivation in cervical cancer. Crit Rev Oncol Hematol. 2021;157:103182.CrossRef
21.
go back to reference Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programed cell death. Cell. 1993;74(4):609–19.CrossRef Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programed cell death. Cell. 1993;74(4):609–19.CrossRef
22.
go back to reference Natarajan T, Anandhi M, Aiswarya D, Ramkumar R, Kumar S, Perumal P. Idaein chloride induced p53 dependent apoptosis in cervical cancer cells through inhibition of viral oncoproteins. Biochimie. 2016;121:13–20.CrossRef Natarajan T, Anandhi M, Aiswarya D, Ramkumar R, Kumar S, Perumal P. Idaein chloride induced p53 dependent apoptosis in cervical cancer cells through inhibition of viral oncoproteins. Biochimie. 2016;121:13–20.CrossRef
23.
go back to reference Javed S, Sharma BK, Sood S, Sharma S, Bagga R, Bhattacharyya S, et al. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer. 2018;18(1):1–12.CrossRef Javed S, Sharma BK, Sood S, Sharma S, Bagga R, Bhattacharyya S, et al. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer. 2018;18(1):1–12.CrossRef
24.
go back to reference Díaz-Tejeda Y, Guido-Jiménez MC, López-Carbajal H, Amador-Molina A, Méndez-Martínez R, Gariglio-Vidal P, et al. Nanog, in cooperation with AP1, increases the expression of E6/E7 oncogenes from HPV types 16/18. Viruses. 2021;13(8):1482.CrossRef Díaz-Tejeda Y, Guido-Jiménez MC, López-Carbajal H, Amador-Molina A, Méndez-Martínez R, Gariglio-Vidal P, et al. Nanog, in cooperation with AP1, increases the expression of E6/E7 oncogenes from HPV types 16/18. Viruses. 2021;13(8):1482.CrossRef
25.
go back to reference de Los G, Fayos Alonso I, Liang HC, Turner SD, Lagger S, Merkel O, Kenner L. The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers. 2018;10:4. de Los G, Fayos Alonso I, Liang HC, Turner SD, Lagger S, Merkel O, Kenner L. The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers. 2018;10:4.
26.
go back to reference Liu Y, Li JZ, Yuan XH, Adler-Storthz K, Che Z. An AP-1 binding site mutation in HPV-16 LCR enhances E6/E7 promoter activity in human oral epithelial cells. Virus Genes. 2002;24(1):29–37.CrossRef Liu Y, Li JZ, Yuan XH, Adler-Storthz K, Che Z. An AP-1 binding site mutation in HPV-16 LCR enhances E6/E7 promoter activity in human oral epithelial cells. Virus Genes. 2002;24(1):29–37.CrossRef
27.
go back to reference Kyo S, Klumpp DJ, Inoue M, Kanaya T, Laimins LA. Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gen Virol. 1997;78(Pt 2):401–11.CrossRef Kyo S, Klumpp DJ, Inoue M, Kanaya T, Laimins LA. Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gen Virol. 1997;78(Pt 2):401–11.CrossRef
28.
go back to reference Wang Q, Song R, Zhao C, Liu H, Yang Y, Gu S, et al. HPV16 E6 promotes cervical cancer cell migration and invasion by downregulation of NHERF1. Int J Cancer. 2019;144(7):1619–32.CrossRef Wang Q, Song R, Zhao C, Liu H, Yang Y, Gu S, et al. HPV16 E6 promotes cervical cancer cell migration and invasion by downregulation of NHERF1. Int J Cancer. 2019;144(7):1619–32.CrossRef
29.
go back to reference Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRef Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRef
Metadata
Title
siRNA-E6 sensitizes HPV-16-related cervical cancer through Oxaliplatin: an in vitro study on anti-cancer combination therapy
Authors
Parisa Shiri Aghbash
Nima Hemmat
Behzad Baradaran
Hossein Bannazadeh Baghi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01014-9

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue