Skip to main content
Top
Published in: European Spine Journal 3/2012

01-03-2012 | Original Article

Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation

Authors: Fabio Galbusera, Hendrik Schmidt, Hans-Joachim Wilke

Published in: European Spine Journal | Issue 3/2012

Login to get access

Abstract

Introduction

A finite element model of the L4-L5 human segment was employed to carry out a parametric biomechanical investigation of lumbar interbody fusion with a novel “sandwich” cage having an inner stiff core and two softer layers in the areas close to the endplates, with and without posterior fixation.

Methods

Considered cage designs included: (a) cage in a homogeneous material with variable elastic modulus (19–2,000 MPa), (b) “sandwich” cage having an inner core (E = 2,000 MPa) and softer layers (E = 19 MPa) with variable thickness (1–2.5 mm). The latter cage was also considered in combination with posterior rods made with a material having variable elastic modulus (19–210,000 MPa). All the models were loaded with 500 N compression and moments of 7.5 Nm in flexion, extension, lateral bending and axial rotation.

Results

The homogeneous cage stabilized the segment in flexion, lateral bending and axial rotation; in extension there was a destabilization up to 60% and remarkable cage movement (1 mm). The “sandwich” cage limited this phenomenon (cage movement <0.6 mm), effectively stabilized the segment in the other directions and lowered the maximal contact pressure on the endplates, reducing the risk of subsidence. Posterior fixation reduced spinal flexibility and cage movement.

Conclusions

The soft layers of the “sandwich” cage had the potential to limit the risk of cage subsidence and to preserve a significant loading of the structure even in combination with flexible posterior instrumentation, which may have a beneficial effect in promoting bony fusion.
Literature
1.
go back to reference Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg 91(2 Suppl):186–192PubMed Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg 91(2 Suppl):186–192PubMed
2.
go back to reference Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11(6):931–934PubMed Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11(6):931–934PubMed
3.
go back to reference Blumenthal SL, Ohnmeiss DD, NASS (2003) Intervertebral cages for degenerative spinal diseases. Spine J 3(4):301–309PubMedCrossRef Blumenthal SL, Ohnmeiss DD, NASS (2003) Intervertebral cages for degenerative spinal diseases. Spine J 3(4):301–309PubMedCrossRef
4.
go back to reference Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP (2008) Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques: a three-dimensional finite element analysis. BMC Musculoskelet Disord 9:88PubMedCrossRef Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP (2008) Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques: a three-dimensional finite element analysis. BMC Musculoskelet Disord 9:88PubMedCrossRef
5.
go back to reference Cunningham BW, Polly DW Jr (2002) The use of interbody cage devices for spinal deformity: a biomechanical perspective. Clin Orthop Relat Res 394:73–83PubMedCrossRef Cunningham BW, Polly DW Jr (2002) The use of interbody cage devices for spinal deformity: a biomechanical perspective. Clin Orthop Relat Res 394:73–83PubMedCrossRef
6.
go back to reference Dietl RH, Krammer M, Kettler A, Wilke HJ, Claes L, Lumenta CB (2002) Pullout test with three lumbar interbody fusion cages. Spine 27(10):1029–1036PubMedCrossRef Dietl RH, Krammer M, Kettler A, Wilke HJ, Claes L, Lumenta CB (2002) Pullout test with three lumbar interbody fusion cages. Spine 27(10):1029–1036PubMedCrossRef
7.
go back to reference Eck KR, Bridwell KH, Ungacta FF, Lapp MA, Lenke LG, Riew KD (2000) Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine 25(18):2407–2415PubMedCrossRef Eck KR, Bridwell KH, Ungacta FF, Lapp MA, Lenke LG, Riew KD (2000) Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine 25(18):2407–2415PubMedCrossRef
8.
go back to reference Fantigrossi A, Galbusera F, Raimondi MT, Sassi M, Fornari M (2007) Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys 29(1):101–109PubMedCrossRef Fantigrossi A, Galbusera F, Raimondi MT, Sassi M, Fornari M (2007) Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys 29(1):101–109PubMedCrossRef
9.
go back to reference Freudenberger C, Lindley EM, Beard DW, Reckling WC, Williams A, Burger EL, Patel VV (2009) Posterior versus anterior lumbar interbody fusion with anterior tension band plating: retrospective analysis. Orthopedics 32(7):492PubMedCrossRef Freudenberger C, Lindley EM, Beard DW, Reckling WC, Williams A, Burger EL, Patel VV (2009) Posterior versus anterior lumbar interbody fusion with anterior tension band plating: retrospective analysis. Orthopedics 32(7):492PubMedCrossRef
10.
go back to reference Galbusera F, Bellini CM, Anasetti F, Ciavarro C, Lovi A, Brayda-Bruno M (2011) Rigid and flexible spinal stabilization devices: A biomechanical comparison. Med Eng Phys 33(4):490–496PubMedCrossRef Galbusera F, Bellini CM, Anasetti F, Ciavarro C, Lovi A, Brayda-Bruno M (2011) Rigid and flexible spinal stabilization devices: A biomechanical comparison. Med Eng Phys 33(4):490–496PubMedCrossRef
11.
go back to reference Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H, American Society for Testing and Materials (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRef Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H, American Society for Testing and Materials (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRef
12.
go back to reference Gumbs AA, Bloom ND, Bitan FD, Hanan SH (2007) Open anterior approaches for lumbar spine procedures. Am J Surg 194(1):98–102PubMedCrossRef Gumbs AA, Bloom ND, Bitan FD, Hanan SH (2007) Open anterior approaches for lumbar spine procedures. Am J Surg 194(1):98–102PubMedCrossRef
13.
go back to reference Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J 14(6):551–558PubMedCrossRef Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J 14(6):551–558PubMedCrossRef
14.
go back to reference Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ (2004) Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine 29(4):E65–E70PubMedCrossRef Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ (2004) Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine 29(4):E65–E70PubMedCrossRef
15.
go back to reference Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3(3):125–140PubMedCrossRef Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3(3):125–140PubMedCrossRef
16.
go back to reference Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141PubMedCrossRef Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141PubMedCrossRef
17.
go back to reference Kettler A, Niemeyer T, Issler L, Merk U, Mahalingam M, Werner K, Claes L, Wilke HJ (2006) In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion. Clin Biomech (Bristol, Avon) 21(5):435–442CrossRef Kettler A, Niemeyer T, Issler L, Merk U, Mahalingam M, Werner K, Claes L, Wilke HJ (2006) In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion. Clin Biomech (Bristol, Avon) 21(5):435–442CrossRef
18.
go back to reference Kim Y, Kim TW (2010) Finite element analysis of the effects of pedicle screw fixation nut loosening on lumbar interbody fusion based on the elasto-plateau plasticity of bone characteristics. Spine (in press) Kim Y, Kim TW (2010) Finite element analysis of the effects of pedicle screw fixation nut loosening on lumbar interbody fusion based on the elasto-plateau plasticity of bone characteristics. Spine (in press)
19.
go back to reference Kim Y, Vanderby R (2000) Finite element analysis of interbody cages in a human lumbar spine. Comput Methods Biomech Biomed Eng 3(4):257–272CrossRef Kim Y, Vanderby R (2000) Finite element analysis of interbody cages in a human lumbar spine. Comput Methods Biomech Biomed Eng 3(4):257–272CrossRef
20.
go back to reference Kim Y (2001) Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine 26(13):1437–1442PubMedCrossRef Kim Y (2001) Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine 26(13):1437–1442PubMedCrossRef
21.
go back to reference Korovessis P, Papazisis Z, Koureas G, Lambiris E (2004) Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results. Spine 29(7):735–742PubMedCrossRef Korovessis P, Papazisis Z, Koureas G, Lambiris E (2004) Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results. Spine 29(7):735–742PubMedCrossRef
22.
go back to reference Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Büttner A, Claes L (2001) Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien) 143(12):1217–1222CrossRef Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Büttner A, Claes L (2001) Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien) 143(12):1217–1222CrossRef
23.
go back to reference Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869 (review)PubMedCrossRef Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869 (review)PubMedCrossRef
24.
go back to reference Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine (Phila Pa 1976) 23(11):1267–1278 (discussion 1279)CrossRef Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine (Phila Pa 1976) 23(11):1267–1278 (discussion 1279)CrossRef
25.
go back to reference Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359PubMedCrossRef Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359PubMedCrossRef
26.
go back to reference McAfee PC, Cunningham BW, Lee GA, Orbegoso CM, Haggerty CJ, Fedder IL, Griffith SL (1999) Revision strategies for salvaging or improving failed cylindrical cages. Spine 24(20):2147–2153PubMedCrossRef McAfee PC, Cunningham BW, Lee GA, Orbegoso CM, Haggerty CJ, Fedder IL, Griffith SL (1999) Revision strategies for salvaging or improving failed cylindrical cages. Spine 24(20):2147–2153PubMedCrossRef
27.
go back to reference Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101PubMedCrossRef Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101PubMedCrossRef
28.
29.
go back to reference Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon) 22(4):377–384CrossRef Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon) 22(4):377–384CrossRef
30.
go back to reference Schmidt H, Heuer F, Wilke HJ (2009) Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? J Biomech 42(1):48–54PubMedCrossRef Schmidt H, Heuer F, Wilke HJ (2009) Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? J Biomech 42(1):48–54PubMedCrossRef
31.
go back to reference Schmidt H, Galbusera F, Rohlmann A, Zander T, Wilke HJ (2010) Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J (in press) Schmidt H, Galbusera F, Rohlmann A, Zander T, Wilke HJ (2010) Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J (in press)
32.
go back to reference Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK (2009) Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation–a finite element study. Med Eng Phys 31(5):565–570PubMedCrossRef Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK (2009) Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation–a finite element study. Med Eng Phys 31(5):565–570PubMedCrossRef
33.
go back to reference Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion: a finite element study. Spine 31(26):E992–E998PubMedCrossRef Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion: a finite element study. Spine 31(26):E992–E998PubMedCrossRef
34.
go back to reference Wehner T, Claes L, Niemeyer F, Nolte D, Simon U (2010) Influence of the fixation stability on the healing time: a numerical study of a patient-specific fracture healing process. Clin Biomech (Bristol, Avon) 25(6):606–612CrossRef Wehner T, Claes L, Niemeyer F, Nolte D, Simon U (2010) Influence of the fixation stability on the healing time: a numerical study of a patient-specific fracture healing process. Clin Biomech (Bristol, Avon) 25(6):606–612CrossRef
35.
go back to reference Wilke HJ, Kettler A, Goetz C, Claes L (2000) Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage. Spine 25(21):2762–2770PubMedCrossRef Wilke HJ, Kettler A, Goetz C, Claes L (2000) Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage. Spine 25(21):2762–2770PubMedCrossRef
36.
go back to reference Wilke HJ, Heuer F, Schmidt H (2009) Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine 34(3):255–261PubMedCrossRef Wilke HJ, Heuer F, Schmidt H (2009) Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine 34(3):255–261PubMedCrossRef
37.
go back to reference Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRef
38.
go back to reference Yan DL, Pei FX, Li J, Soo CL (2008) Comparative study of PLIF and TLIF treatment in adult degenerative spondylolisthesis. Eur Spine J 17(10):1311–1316PubMedCrossRef Yan DL, Pei FX, Li J, Soo CL (2008) Comparative study of PLIF and TLIF treatment in adult degenerative spondylolisthesis. Eur Spine J 17(10):1311–1316PubMedCrossRef
Metadata
Title
Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation
Authors
Fabio Galbusera
Hendrik Schmidt
Hans-Joachim Wilke
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 3/2012
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-011-2014-0

Other articles of this Issue 3/2012

European Spine Journal 3/2012 Go to the issue