Skip to main content
Top
Published in: BMC Surgery 1/2021

Open Access 01-12-2021 | Lumbar Disc Herniation | Research article

Microscopic extra-laminar sequestrectomy (MELS) for the treatment of hidden zone lumbar disc herniation: report of the surgical technique, patient selection, and clinical outcomes

Authors: Chunxiao Wang, Yao Zhang, Xiaojie Tang, Haifei Cao, Qinyong Song, Jiangwei Tan, Chengzhen Jin, Hongkai Song

Published in: BMC Surgery | Issue 1/2021

Login to get access

Abstract

Background

The area which located at the medial pedicle, posterior vertebral body and ventral hemilamina is defined as the hidden zone. Surgical management of hidden zone lumbar disc herniation (HZLDH) is technically challenging due to its difficult surgical exposure. The conventional interlaminar approach harbors the potential risk of post-surgical instability, while other approaches consist of complicated procedures with a steep learning curve and prolonged operation time.

Objective

To introduce microscopic extra-laminar sequestrectomy (MELS) technique for treatment of hidden zone lumbar disc herniation and present clinical outcomes.

Methods

Between Jan 2016 to Jan 2018, twenty one patients (13 males) with HZLDH were enrolled in this study. All patients underwent MELS (19 patients underwent sequestrectomy only, 2 patients underwent an additional inferior discectomy). The nerve root and fragment were visually exposed using MELS. The operation duration, blood loss, intra- and postoperative complications, and recurrences were recorded. The Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and the modified MacNab criteria were used to evaluate clinical outcomes. Postoperative stability was evaluated both radiologically and clinically.

Results

The mean follow-up period was 20.95 ± 2.09 (18–24) months. The mean operation time was 32.43 ± 7.19 min and the mean blood loss was 25.52 ± 5.37 ml. All patients showed complete neurological symptom relief after surgery. The VAS and ODI score were significantly improved at the final follow-up compared to those before operation (7.88 ± 0.70 vs 0.10 ± 0.30, 59.24 ± 10.83 vs 11.29 ± 3.59, respectively, p < 0.05). Seventeen patients (81%) obtained an “excellent” outcome and the remaining four (19%) patients obtained a “good” outcome based the MacNab criteria. One patient suffered reherniation at the same level one year after the initial surgery and underwent a transforaminal endoscopic discectomy. No major complications and postoperative instability were observed.

Conclusions

Our observation suggest that MELS is safe and effective in the management of HZLDH. Due to its relative simplicity, it comprises a flat surgical learning curve and shorter operation duration, and overall results in reduced disturbance to lumbar stability.
Literature
1.
go back to reference Luis RV, Emiliano NV, Juan ESH, Gustavo G. Lumbar disc herniation. Rev Bras Ortop. 2010;45(1):17–22.CrossRef Luis RV, Emiliano NV, Juan ESH, Gustavo G. Lumbar disc herniation. Rev Bras Ortop. 2010;45(1):17–22.CrossRef
2.
go back to reference Chen BL, Guo JB, Zhang HW, Zhang YJ, Zhu Y, Zhang J, et al. Surgical versus non-operative treatment for lumbar disc herniation: a systematic review and meta-analysis. Clin Rehabil. 2018;32:146–60.CrossRef Chen BL, Guo JB, Zhang HW, Zhang YJ, Zhu Y, Zhang J, et al. Surgical versus non-operative treatment for lumbar disc herniation: a systematic review and meta-analysis. Clin Rehabil. 2018;32:146–60.CrossRef
3.
go back to reference Lurie JD, Tosteson TD, Tosteson AN, Zhao W, Morgan TS, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: eight-year results for the spine patient outcomes research trial. Spine. 2014;39:3–16.CrossRef Lurie JD, Tosteson TD, Tosteson AN, Zhao W, Morgan TS, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: eight-year results for the spine patient outcomes research trial. Spine. 2014;39:3–16.CrossRef
4.
go back to reference Wiltse LL, Berger PE, McCulloch JA. A system for reporting the size and location of lesions in the spine. Spine (Phila Pa 1976). 1997;22:1534–7.CrossRef Wiltse LL, Berger PE, McCulloch JA. A system for reporting the size and location of lesions in the spine. Spine (Phila Pa 1976). 1997;22:1534–7.CrossRef
5.
go back to reference Macnab I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J Bone Jt Surg Am. 1971;53:891–903.CrossRef Macnab I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J Bone Jt Surg Am. 1971;53:891–903.CrossRef
6.
go back to reference Clemens R, Navid R, Marek M, Bernhard R. Surgical approaches to the lumbar hidden zone: current strategies and future directions. EBioMedicine. 2015;2:1005–7.CrossRef Clemens R, Navid R, Marek M, Bernhard R. Surgical approaches to the lumbar hidden zone: current strategies and future directions. EBioMedicine. 2015;2:1005–7.CrossRef
7.
go back to reference Caspar W, Campbell B, Barbier DD, Kretschmmer R, Gotfried Y. The Caspar microsurgical discectomy and comparison with a conventional standard lumbar disc procedure. Neurosurgery. 1991;28:78–86.CrossRef Caspar W, Campbell B, Barbier DD, Kretschmmer R, Gotfried Y. The Caspar microsurgical discectomy and comparison with a conventional standard lumbar disc procedure. Neurosurgery. 1991;28:78–86.CrossRef
8.
go back to reference Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine. 1990;1990(15):1142–7.CrossRef Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine. 1990;1990(15):1142–7.CrossRef
9.
go back to reference Schulz C, Kunz U, Mauer UM, Mathieu R. Early postoperative results after removal of cranially migrated lumbar disc prolapse: retrospective comparison of three different surgical strategies. Adv Orthop. 2014;2014:702163.CrossRef Schulz C, Kunz U, Mauer UM, Mathieu R. Early postoperative results after removal of cranially migrated lumbar disc prolapse: retrospective comparison of three different surgical strategies. Adv Orthop. 2014;2014:702163.CrossRef
10.
go back to reference Di Lorenzo N, Porta F, Onnis G, Cannas A, Arbau G, Maleci A. Pars interarticularis fenestration in the treatment of foraminal lumbar disc herniation: a further surgical approach. Neurosurgery. 1998;42:87–9; discussion 89–90.CrossRef Di Lorenzo N, Porta F, Onnis G, Cannas A, Arbau G, Maleci A. Pars interarticularis fenestration in the treatment of foraminal lumbar disc herniation: a further surgical approach. Neurosurgery. 1998;42:87–9; discussion 89–90.CrossRef
11.
go back to reference Soldner F, Hoelper BM, Wallenfang T, Behr R. The translaminar approach to canalicular and cranio-dorsolateral lumbar disc herniations. Acta Neurochir (Wien). 2002;144:315–20.CrossRef Soldner F, Hoelper BM, Wallenfang T, Behr R. The translaminar approach to canalicular and cranio-dorsolateral lumbar disc herniations. Acta Neurochir (Wien). 2002;144:315–20.CrossRef
12.
go back to reference Ivanov AA, Faizan A, Ebraheim NA, Yeasting R, Goel VK. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3–L4 and L4–L5: anatomic and finite element investigations. Spine. 2007;32:2462–6.CrossRef Ivanov AA, Faizan A, Ebraheim NA, Yeasting R, Goel VK. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3–L4 and L4–L5: anatomic and finite element investigations. Spine. 2007;32:2462–6.CrossRef
13.
go back to reference Dezawa A, Mikami H, Sairyo K. Percutaneous endoscopic translaminar approach for herniated nucleus pulposus in the hidden zone of the lumbar spine. Asian J Endosc Surg. 2012;5:200–3.CrossRef Dezawa A, Mikami H, Sairyo K. Percutaneous endoscopic translaminar approach for herniated nucleus pulposus in the hidden zone of the lumbar spine. Asian J Endosc Surg. 2012;5:200–3.CrossRef
14.
go back to reference Schulz C, Abdeltawab A, Mauer UM. Translaminar approach to cranio-laterally herniated lumbar disc prolapse. Acta Neurochir (Wien). 2012;154:711–4.CrossRef Schulz C, Abdeltawab A, Mauer UM. Translaminar approach to cranio-laterally herniated lumbar disc prolapse. Acta Neurochir (Wien). 2012;154:711–4.CrossRef
15.
go back to reference Papavero L, Langer N, Fritzsche E, Emami P, Westphal M, Kothe R. The translaminar approach to lumbar disc herniations impinging the exiting root. Neurosurgery. 2008;62:173–7; discussion 177–8.PubMed Papavero L, Langer N, Fritzsche E, Emami P, Westphal M, Kothe R. The translaminar approach to lumbar disc herniations impinging the exiting root. Neurosurgery. 2008;62:173–7; discussion 177–8.PubMed
16.
go back to reference Donaldson WF, Star MJ, Thorne RP. Surgical treatment for the far lateral herniated lumbar disc. Spine. 1993;18:1263–7.CrossRef Donaldson WF, Star MJ, Thorne RP. Surgical treatment for the far lateral herniated lumbar disc. Spine. 1993;18:1263–7.CrossRef
17.
go back to reference Wang D, Pan H, Hu Q, Zhu H, Zhu L, He Y, et al. Percutaneous endoscopic transpedicle approach for herniated nucleus pulposus in the lumbar hidden zone. Asian J Endosc Surg. 2017;10:87–91.CrossRef Wang D, Pan H, Hu Q, Zhu H, Zhu L, He Y, et al. Percutaneous endoscopic transpedicle approach for herniated nucleus pulposus in the lumbar hidden zone. Asian J Endosc Surg. 2017;10:87–91.CrossRef
18.
go back to reference Reinshagen C, Ruess D, Molcanyi M, Redjal N, Walcott BP, Goldbrunner R, et al. A novel translaminar crossover approach for pathologies in the lumbar hidden zone. J Clin Neurosci. 2015;22:1030–5.CrossRef Reinshagen C, Ruess D, Molcanyi M, Redjal N, Walcott BP, Goldbrunner R, et al. A novel translaminar crossover approach for pathologies in the lumbar hidden zone. J Clin Neurosci. 2015;22:1030–5.CrossRef
19.
go back to reference Daghighi MH, Pouriesa M, Maleki M, Fouladi DF, Pezeshki MZ, Mazaheri KR, et al. Migration patterns of herniated disc fragments: a study on 1,020 patients with extruded lumbar disc herniation. Spine J. 2014;14:1970–7.CrossRef Daghighi MH, Pouriesa M, Maleki M, Fouladi DF, Pezeshki MZ, Mazaheri KR, et al. Migration patterns of herniated disc fragments: a study on 1,020 patients with extruded lumbar disc herniation. Spine J. 2014;14:1970–7.CrossRef
20.
go back to reference Reulen HJ, Müller A, Ebeling U. Microsurgical anatomy of the lateral approach to extraforaminal lumbar disc herniations. Neurosurgery. 1996;39:345–50; discussion 350–351.CrossRef Reulen HJ, Müller A, Ebeling U. Microsurgical anatomy of the lateral approach to extraforaminal lumbar disc herniations. Neurosurgery. 1996;39:345–50; discussion 350–351.CrossRef
21.
go back to reference Faulhauer K, Manicke C. Fragment excision versus conventional disc removal in the microsurgical treatment of herniated lumbar disc. Acta Neurochir (Wien). 1995;133:107–11.CrossRef Faulhauer K, Manicke C. Fragment excision versus conventional disc removal in the microsurgical treatment of herniated lumbar disc. Acta Neurochir (Wien). 1995;133:107–11.CrossRef
22.
go back to reference Kotil K, Köksal NS, Kayaci S. Long term results of lumbar sequestrectomy versus aggressive microdiscectomy. J Clin Neurosci. 2014;21:1714–8.CrossRef Kotil K, Köksal NS, Kayaci S. Long term results of lumbar sequestrectomy versus aggressive microdiscectomy. J Clin Neurosci. 2014;21:1714–8.CrossRef
23.
go back to reference Ebeling U, Reulen HJ. Are there typical localisations of lumbar disc herniations? A prospective study. Acta Neurochirurg (Wein). 1992;117:143–8.CrossRef Ebeling U, Reulen HJ. Are there typical localisations of lumbar disc herniations? A prospective study. Acta Neurochirurg (Wein). 1992;117:143–8.CrossRef
24.
go back to reference Barth M, Diepers M, Weiss C, Thomé C. Two-year outcome after lumbar microdiscectomy versus microscopic sequestrectomy: part 2: radiographic evaluation and correlation with clinical outcome. Spine. 2008;33:273–9.CrossRef Barth M, Diepers M, Weiss C, Thomé C. Two-year outcome after lumbar microdiscectomy versus microscopic sequestrectomy: part 2: radiographic evaluation and correlation with clinical outcome. Spine. 2008;33:273–9.CrossRef
Metadata
Title
Microscopic extra-laminar sequestrectomy (MELS) for the treatment of hidden zone lumbar disc herniation: report of the surgical technique, patient selection, and clinical outcomes
Authors
Chunxiao Wang
Yao Zhang
Xiaojie Tang
Haifei Cao
Qinyong Song
Jiangwei Tan
Chengzhen Jin
Hongkai Song
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2021
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-021-01255-7

Other articles of this Issue 1/2021

BMC Surgery 1/2021 Go to the issue