Skip to main content
Top
Published in: Diabetologia 7/2014

01-07-2014 | Article

Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes

Authors: Michael S. Turner, Kumiko Isse, Douglas K. Fischer, Hēth R. Turnquist, Penelope A. Morel

Published in: Diabetologia | Issue 7/2014

Login to get access

Abstract

Aims/hypothesis

Weak stimulation of CD4+ T cells induces expansion of CD4+ forkhead box P3+ regulatory T cells (Tregs) and can also promote T helper (Th) 2 responses, which have demonstrable beneficial effects on autoimmune diabetes. This study explored the feasibility of combined Treg/Th2 expansion for immunotherapy of type 1 diabetes in NOD mice.

Methods

We compared Treg and Th responses to dendritic cells (DC) presenting scaled antigen doses to islet-specific NOD CD4+ T cells. Flow cytometric and Luminex analyses were performed to determine the phenotype and cytokine profile of expanded T cells. The ability of expanded T cells to prevent type 1 diabetes was tested in an adoptive transfer model.

Results

In vitro studies revealed a hierarchical, selective expansion of Treg and T effector (Teff) populations at different antigen doses. Thus, a single low dose produced a mixture of Tregs Th2 and type 1 regulatory (Tr1) cells, which prevented diabetes in NOD-SCID mice and increased the ratio of Treg/Teff cells infiltrating the pancreatic islets. Subcutaneous injection of DC, previously shown to prevent diabetes in NOD mice, induced expansion of the same mixture of Tregs Tr1 and Th2 cells. Low-dose expansion of Treg required MHC–T cell receptor interaction and was partly dependent on T cell derived TGF-β and IL-2. Autocrine IFN-γ was required for the promotion of diabetogenic Th1 cells at high antigen doses.

Conclusions/interpretation

Weak stimulation of CD4+ T cells with DC and low-dose antigen expands a combination of antigen-specific Tregs Th2 and Tr1 cells that prevent autoimmunity, without the need to target or purify specific Treg populations.
Literature
1.
go back to reference Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed
2.
go back to reference Wing K, Fehérvári Z, Sakaguchi S (2006) Emerging possibilities in the development and function of regulatory T cells. Int Immunol 18:991–1000PubMedCrossRef Wing K, Fehérvári Z, Sakaguchi S (2006) Emerging possibilities in the development and function of regulatory T cells. Int Immunol 18:991–1000PubMedCrossRef
4.
go back to reference Sauer S, Bruno L, Hertweck A et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802PubMedCentralPubMedCrossRef Sauer S, Bruno L, Hertweck A et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802PubMedCentralPubMedCrossRef
5.
go back to reference Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCentralPubMedCrossRef Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCentralPubMedCrossRef
6.
go back to reference Lee K, Gudapati P, Dragovic S et al (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:743–753PubMedCentralPubMedCrossRef Lee K, Gudapati P, Dragovic S et al (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:743–753PubMedCentralPubMedCrossRef
7.
8.
go back to reference Leiter EH, Prochazka M, Coleman DL (1987) Animal model of human disease, the nonobese diabetic (NOD) mouse. Am J Pathol 128:380–383PubMedCentralPubMed Leiter EH, Prochazka M, Coleman DL (1987) Animal model of human disease, the nonobese diabetic (NOD) mouse. Am J Pathol 128:380–383PubMedCentralPubMed
9.
go back to reference Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA (1999) Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 48:2300–2308PubMedCrossRef Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA (1999) Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 48:2300–2308PubMedCrossRef
10.
go back to reference Feili-Hariri M, Falkner DH, Gambotto A et al (2003) Dendritic cells transduced to express IL-4 prevent diabetes in nonobese diabetic mice with established insulitis. Hum Gene Ther 14:13–23PubMedCrossRef Feili-Hariri M, Falkner DH, Gambotto A et al (2003) Dendritic cells transduced to express IL-4 prevent diabetes in nonobese diabetic mice with established insulitis. Hum Gene Ther 14:13–23PubMedCrossRef
11.
go back to reference Feili-Hariri M, Falkner DH, Morel PA (2002) Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur J Immunol 32:2021–2030PubMedCrossRef Feili-Hariri M, Falkner DH, Morel PA (2002) Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur J Immunol 32:2021–2030PubMedCrossRef
12.
go back to reference Judkowski V, Pinilla C, Schroder K, Tucker L, Sarvetnick N, Wilson DB (2001) Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol 166:908–917PubMedCrossRef Judkowski V, Pinilla C, Schroder K, Tucker L, Sarvetnick N, Wilson DB (2001) Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol 166:908–917PubMedCrossRef
13.
go back to reference Isse K, Grama K, Abbott IM et al (2010) Adding value to liver (and allograft) biopsy evaluation using a combination of multiplex quantum dot immunostaining, High-resolution whole-slide digital imaging, and automated image analysis. Clin Liver Dis 14:669–685PubMedCrossRef Isse K, Grama K, Abbott IM et al (2010) Adding value to liver (and allograft) biopsy evaluation using a combination of multiplex quantum dot immunostaining, High-resolution whole-slide digital imaging, and automated image analysis. Clin Liver Dis 14:669–685PubMedCrossRef
14.
go back to reference Turnquist HR, Zhao Z, Rosborough BR et al (2011) IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 187:4598–4610PubMedCentralPubMedCrossRef Turnquist HR, Zhao Z, Rosborough BR et al (2011) IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 187:4598–4610PubMedCentralPubMedCrossRef
15.
go back to reference Haase C, Ejrnaes M, Juedes AE, Wolfe T, Markholst H, von Herrath MG (2005) Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo. Blood 106:4225–4233PubMedCentralPubMedCrossRef Haase C, Ejrnaes M, Juedes AE, Wolfe T, Markholst H, von Herrath MG (2005) Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo. Blood 106:4225–4233PubMedCentralPubMedCrossRef
16.
go back to reference Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182:1579–1584PubMedCrossRef Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182:1579–1584PubMedCrossRef
17.
go back to reference Rabinovitch A, Suarez-Pinzon WL (2007) Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys 48:159–163PubMedCrossRef Rabinovitch A, Suarez-Pinzon WL (2007) Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys 48:159–163PubMedCrossRef
18.
go back to reference Afkarian M, Sedy JR, Yang J et al (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3:549–557PubMedCrossRef Afkarian M, Sedy JR, Yang J et al (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3:549–557PubMedCrossRef
19.
go back to reference Fisson S, Djelti F, Trenado A et al (2006) Therapeutic potential of self-antigen-specific CD4+ CD25+ regulatory T cells selected in vitro from a polyclonal repertoire. Eur J Immunol 36:817–827PubMedCrossRef Fisson S, Djelti F, Trenado A et al (2006) Therapeutic potential of self-antigen-specific CD4+ CD25+ regulatory T cells selected in vitro from a polyclonal repertoire. Eur J Immunol 36:817–827PubMedCrossRef
20.
go back to reference Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201PubMedCentralPubMedCrossRef Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201PubMedCentralPubMedCrossRef
21.
go back to reference O’Gorman WE, Dooms H, Thorne SH et al (2009) The initial phase of an immune response functions to activate regulatory T cells. J Immunol 183:332–339PubMedCentralPubMedCrossRef O’Gorman WE, Dooms H, Thorne SH et al (2009) The initial phase of an immune response functions to activate regulatory T cells. J Immunol 183:332–339PubMedCentralPubMedCrossRef
22.
go back to reference Kim HP, Kelly J, Leonard WJ (2001) The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15:159–172PubMedCrossRef Kim HP, Kelly J, Leonard WJ (2001) The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15:159–172PubMedCrossRef
23.
go back to reference Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 182:1591–1596PubMedCrossRef Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 182:1591–1596PubMedCrossRef
24.
go back to reference Caretto D, Katzman SD, Villarino AV, Gallo E, Abbas AK (2010) Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J Immunol 184:30–34PubMedCentralPubMedCrossRef Caretto D, Katzman SD, Villarino AV, Gallo E, Abbas AK (2010) Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J Immunol 184:30–34PubMedCentralPubMedCrossRef
25.
go back to reference Chang J-H, Kim Y-J, Han S-H, Kang C-Y (2009) IFN-γ-STAT1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis. Eur J Immunol 39:1241–1251PubMedCrossRef Chang J-H, Kim Y-J, Han S-H, Kang C-Y (2009) IFN-γ-STAT1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis. Eur J Immunol 39:1241–1251PubMedCrossRef
26.
go back to reference Molinero LL, Miller ML, Evaristo C, Alegre ML (2011) High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 186:4609–4617PubMedCentralPubMedCrossRef Molinero LL, Miller ML, Evaristo C, Alegre ML (2011) High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 186:4609–4617PubMedCentralPubMedCrossRef
27.
go back to reference Lighvani AA, Frucht DM, Jankovic D et al (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 98:15137–15142PubMedCentralPubMedCrossRef Lighvani AA, Frucht DM, Jankovic D et al (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 98:15137–15142PubMedCentralPubMedCrossRef
28.
Metadata
Title
Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes
Authors
Michael S. Turner
Kumiko Isse
Douglas K. Fischer
Hēth R. Turnquist
Penelope A. Morel
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3233-9

Other articles of this Issue 7/2014

Diabetologia 7/2014 Go to the issue